Сверхпроводящие материалы в энергетике — КиберПедия 

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Сверхпроводящие материалы в энергетике

2017-06-11 363
Сверхпроводящие материалы в энергетике 0.00 из 5.00 0 оценок
Заказать работу

 

ОБШАРОВ В.А., НПК им. Е.Н. Королёва, г. Нижнекамск

Науч. рук. канд. пед. наук, преп. ИЗОТОВА П.А.;
зав. эл. отд. СЕРГЕЕВА Р.В.

 

Одним из основных направлений развития науки намечены теоретические и экспериментальные исследования в области сверхпро­водящих материалов, а одним из основных направлений развития техники – разработка сверхпроводниковых турбогенераторов.

Вопросы различных применений сверхпроводящих материалов стали обсуждаться практически сразу после открытия явления сверхпро­водимости. Еще Камерлинг Оннес считал, что с помощью сверхпровод­ников можно создавать экономичные установки для получения сильных магнитных полей. Однако реальное использование сверхпроводников началось в 50-х – начале 60-х годов XX века. В настоящее время работают сверхпроводящие магниты различных размеров и форм. Их применение вышло за рамки чисто научных исследований, и сегодня они широко используются в лабораторной практике, в ускорительной технике, томографах, установках для управляемой термоядерной реакции. С помощью сверхпроводимости стало возможным многократно повысить чувствительность многих измерительных приборов. Такие приборы названы сквидами (от англ. Superconducting Quantum Interference Devices).

Одним из перспективных развитий в электромашиностроении является использование сверхпроводящих материалов.

Сверхпроводящее электрооборудование позволит резко увеличить электрические и магнитные нагрузки в элементах устройств и благодаря этому резко сократить их размеры. В сверхпроводящем проводе допустима плотность тока, в 10–50 раз превышающая плотность тока в обычном электрооборудовании. Магнитные поля можно будет довести до значений порядка 10 Тл по сравнению с 0,8–1 Тл в обычных машинах. Если учесть, что размеры электротехнических устройств обратно пропорциональны произведению допустимой плотности тока на индукцию магнитного поля, то ясно, что применение сверхпроводников уменьшит размеры и массу электрооборудования во много раз!

Применение сверхпроводимости в турбогенераторах большой мощности перспективно потому, что именно здесь удается достигнуть того, чего при других технических решениях сделать невозможно. В обычных машинах это уменьшение габаритов всегда связано с увели­чением потерь и трудностями обеспечения высокого КПД. Здесь этот вопрос решается радикально: массу турбогенераторов можно увеличить в 2–2,5 раза, в то же время в связи с отсутствием потерь в роторе удается повысить КПД примерно на 0,5 % и приблизиться для крупных турбогенераторов к КПД порядка 99,3 %. Повышение КПД турбо-генераторов на 0,1 % компенсирует затраты, связанные с созданием генераторов, на 30 %. Для установки мощного турбогенератора нужна относительно небольшая площадь электростанции. Значит, сокращаются расходы на сооружение машинного зала, станцию можно быстрее ввести в строй. И, наконец, чем крупнее электрическая машина, тем выше ее КПД.

Немало забот возникает при транспортировке. Для перевозки того же турбогенератора мощностью 1200 МВт пришлось построить сочлененный транспортер грузоподъемностью 500 т, длиной почти 64 м. Каждая из двух его тележек опиралась на 16 вагонных осей.

В этих условиях экономия энергии, получаемая за счет снижения потерь, очень быстро оправдывает те затраты, которые вкладываются в создание новых сверхпроводниковых машин. Экономически это, конечно, оправдано, но все дело в том, что для того, чтобы выйти в энергетику с большими машинами, нужно пройти очень сложный путь создания машин все больших мощностей.

Многие препятствия сами по себе отпадают, если использовать эффект сверхпроводимости и применить сверхпроводящие материалы. Тогда потери в роторной обмотке можно практически свести к нулю, так как постоянный ток не будет встречать в ней сопротивления.

При этом нужно решать и более трудную проблему – обеспечение высокой надежности. Очень важным моментом в этой связи является отработка токовводов при создании машин высокой мощности. Перепад температур на токовводах составляет около 300 К, они имеют внутренние источники тепловыделения, и поэтому представляют собой один из наиболее напряженных в эксплуатационном отношении узлов сверхпроводникового электротехнического устройства, являясь потенциально опасным источником аварий в криогенной зоне. Поэтому при разработке токовводов в первую очередь необходимо обращать внимание на надежность их работы, обеспечивая ее даже в ущерб тепло- и электрохарактеристикам токовводов.

 

УДК 608.2

 


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.007 с.