Сведение связанности к минимуму — КиберПедия 

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Сведение связанности к минимуму



 

Что произойдет, если появятся модули, которые знают друг о друге. В принципе ничего – вы не должны впадать в паранойю, как шпионы или диссиденты. Однако, необходимо внимательно следить за тем, со сколькими другими модулями вы взаимодействуете. Это важнее, чем то, каким образом вы пришли к взаимодействию с ними.

Предположим, вы занимаетесь перепланировкой своего дома или строите дом с нуля. Обычная организация включает "генерального подрядчика". Вы нанимаете подрядчика для выполнения работ, но подрядчик выполняет или не выполняет эти работы сам; работа может быть предложена разнообразным субподрядчикам. Но, будучи клиентом, вы не имеете дело с субподрядчиками напрямую, генеральный подрядчик берет от вашего имени эту головную боль на себя.

Нам бы хотелось воспользоваться той же моделью в программном обеспечении. Когда мы запрашиваем у объекта определенную услугу, то мы хотим, что бы эта услуга оказывалась от нашего имени. Мы не хотим, чтобы данный объект предоставлял нам еще какой-то объект, подготовленный третьей стороной, с которым нам придется иметь дело для получения необходимой услуги.

Предположим, что вы пишете класс, генерирующий график по данным научного прибора. Научные приборы рассеяны по всему миру, каждый объект-прибор содержит объект-местоположение, который дает информацию о его расположении и часовом поясе. Вы хотите, чтобы ваши пользователи могли выбирать прибор и наносить его данные на график с отметкой часового пояса. Вы можете записать

public void plotDate(Date aDate Selection aSelection) {

TimeZone tz =

ASelection.getRecorder().getLocation().getTimeZone();

...

}

Но теперь подпрограмма построения графика без особой надобности связана с тремя классами – Selection, Recorder и Location. Этот стиль программирования резко увеличивает число классов, от которых зависит наш класс. Почему это плохо? Потому что при этом увеличивается риск того, что внесение несвязанного изменения в другой части системы затронет вашу программу. Например, если сотрудник по имени Фред вносит изменение в класс Location так, что он непосредственно более не содержит TimeZone, то вам придется внести изменения и в свою программу.

Вместо того чтобы продираться через иерархию самостоятельно, просто спросите напрямую о том, что вам нужно:

public void plotDate(Date aDate, TimeZone aTz) {

...

}

plotDate(someDate, someSelection.getTimeZone());

Мы добавили метод к классу Selection, чтобы получить часовой пояс от своего имени; подпрограмме построения графика неважно, передается ли часовой пояс непосредственно из класса Recorder, от некоего объекта, содержащегося в Recorder, или же класс Selection сам составляет другой часовой пояс. В свою очередь, подпрограмма выбора должна запросить прибор о его часовом поясе, оставив прибору право получить его значение из содержащегося в нем объекта Location.



Непосредственное пересечение отношений между объектами может быстро привести к комбинаторному взрыву [28] отношений зависимости. Признаки этого явления можно наблюдать в ряде случаев:

1. В крупномасштабных проектах на языках С или С++, где команда компоновки процедуры тестирования длиннее, чем сама программа тестирования.

2. «Простые» изменения в одном модуле, распространяющиеся в системе через модули, не имеющие связей.

3. Разработчики, которые боятся изменить программу, поскольку они не уверены, как и на чем скажется это изменение.

Системы, в которых имеется большое число ненужных зависимостей, отличаются большой сложностью (и высокими затратами) при сопровождении и в большинстве случае весьма нестабильны. Для того чтобы поддерживать число зависимостей на минимальном уровне, мы воспользуемся законом Деметера при проектировании методов и функций.

 

Закон Деметера для функций

 

Закон Деметера для функций [LH89] пытается свести к минимуму связывание между модулями в любой программе. Он пытается удержать вас от проникновения в объект для получения доступа к методам третьего объекта. Краткое содержание данного закона представлено на рисунке 5.1.

Создавая «скромную» программу, в которой закон Деметера соблюдается в максимально возможной степени, мы можем добиться цели, выраженной в следующей подсказке:

 

 

Подсказка 36: Минимизируйте связывание между модулями

 

А не все ли равно?

 

Оказывает ли следование закону Деметера (каким бы хорошим он не был с точки зрения теории) реальную помощь в создании программ, более простых в сопровождении?



Исследования [ВВМ96] показали, что классы в языке С++ с большими совокупностями откликов менее ошибкоустойчивы, чем классы с небольшими совокупностями (совокупность откликов представляет собой число функций, непосредственно вызываемых методами конкретного класса).

Рис. 5.1. Закон Деметера для функций

 

Поскольку следование закону Деметера уменьшает размер совокупности отклика в вызывающем отклике, то классы, спроектированные данным образом, также будут менее склонны к наличию ошибок (см. [URL 56], где приводится более подробная информация о статьях и других источниках по проекту Деметера).

Использование закона Деметера сделает вашу программу более адаптируемой и устойчивой, но не бесплатно: будучи "генеральным подрядчиком", ваша программа должна непосредственно делегировать полномочия и управлять всеми существующими субподрядчиками, не привлекая к этому клиентов вашего модуля. На практике это означает, что вы будете создавать большое количество методов-оболочек, которые просто направляют запрос далее к делегату. Эти методы-оболочки влекут за собой расходы во время исполнения и накладные расходы дискового пространства, которые могут оказаться весьма значительными, а для некоторых приложений даже запредельными.

Как и при использовании любой методики, вы должны взвесить все «за» и «против» для конкретного приложения. В проекте схемы базы данных обычной практикой является «денормализация» схемы для улучшения производительности: нарушение правил нормализации в обмен на скорость выполнения. Подобного же компромисса можно достичь и в этом случае. На самом деле, обращая закон Деметера и плотно связывая несколько модулей, вы можете получить существенный выигрыш в производительности. Ваша конструкция работает прекрасно, пока она известна и приемлема для этих связываемых модулей.

 

Физическая несвязанность

 

В данном разделе мы много говорим о сохранении логической несвязанности между элементами проектируемой системы. Однако существует взаимозависимость другого рода, которая становится весьма существенной с увеличением масштаба систем. В своей книге "Large-Scale С++ Software Design" [Lak96] Джон Лакос обращается к вопросам, касающимся отношений между файлами, каталогами и библиотеками, составляющими систему. Игнорирование этих проблем физического проектирования в крупномасштабных проектах приводит, помимо прочих проблем, к тому, что цикл сборки может растягиваться на несколько дней, а процедуры модульного тестирования могут сорвать сроки готовности всей системы. Г-н Лакос приводит убедительные доказательства того, что логическое и физическое проектирование должно осуществляться в тандеме и что устранение повреждений в большом фрагменте программы, нанесенных ему циклическими зависимостями, представляется чрезвычайно трудным делом. Мы рекомендуем вам прочесть эту книгу, если вы участвуете в разработке крупномасштабных проектов, даже если вы осуществляете реализацию на языке, отличном от С++.

В противном случае вы можете оказаться на пути к хрупкому, негибкому будущему. Или вообще оказаться без будущего.

 

Другие разделы, относящиеся к данной теме:

 

• Ортогональность

• Обратимость

• Проектирование по контракту

• Балансировка ресурсов

• Всего лишь визуальное представление

• Команды прагматиков

• Безжалостное тестирование

 

Вопросы для обсуждения

 

• Мы обсудили, как делегирование полномочий облегчает соблюдение закона Деметера и, следовательно, уменьшает связывание. Однако написание всех методов, необходимых для пересылки вызовов к делегированным классам, является утомительной процедурой, чреватой ошибками. Каковы преимущества и недостатки написания препроцессора, который автоматически генерирует эти вызовы? Должен ли этот препроцессор запускаться только единожды, или же он должен применяться как составная часть процесса сборки?

 

Упражнения

 

24. Мы обсудили концепцию физической несвязанности в последней врезке. Какой из указанных ниже файлов заголовка в языке С++ характеризуется более сильным связыванием с остальной системой? (Ответ см. в Приложении В.)

person1.h

#include "date.b"

class Person 1 {

private:

Date myBirthdate;

public:

Person1(Date &birthDate);

//...

 

person2.h

class Date;

class Person2 {

private:

Date *myBirthdate;

public:

 

25. В данном примере и примерах из упражнений 26 и 27 определите, являются ли показанные вызовы метода допустимыми с точки зрения закона Деметера. Первый пример написан на языке Java. (Ответом, в Приложении В.)

public void showBalance(BankAccount acct) {

Money amt = acct.getBalance();

printToScreen(amt.printFormat());

}

 

26. Этот пример также написан на языке Java. (Ответ см. в Приложении В.)

public class Colada {

private Blender myBlender;

private Vector myStuff;

public Colada() {

myBlender = new Blender();

myStuff = new Vector));

}

private void doSomething() {

myBlender.addlngredients(myStuff.elements());

}

}

 

27. Этот пример написан на языке С + +. (Ответ см. в Приложении В.)

void processTransaction(BankAccount acct, int) {

Person *who;

Money amt;

amt.setValue(123.45);

acct.setBalance(amt);

who = acct.getOwnerQ;

markWorkflow(who->name(), SET BALANCE);

}

 

 

Метапрограммирование

 

Никакая гениальность не спасает от любви к подробностям.

Восьмой закон Леви

 

Подробности смешивают все в нашей первоначальной программе – особенно если эти подробности часто меняются. Каждый раз, когда нам приходится входить в программу и вносить в нее изменения для того, чтобы привести ее в соответствие с изменившейся бизнес-логикой, законодательством или вкусами руководства, мы рискуем нарушить систему, т. е. внести в нее новый дефект.

Поэтому мы говорим: "Долой подробности!". Уберите их из программы. В этом случае мы можем сделать нашу программу гибкой при настройке и легко адаптирующейся к изменениям.

 

Динамическая конфигурация

 

Прежде всего мы хотим сделать системы гибкими при настройке. Это касается не только цвета экрана и текста, но и более глубоких вещей, таких как выбор алгоритмов, программ баз данных, технологии связующего программного обеспечения и стиля пользовательского интерфейса. Эти пункты должны реализовываться в виде вариантов конфигурации, а не за счет интеграции или технологии.

 

 

Подсказка 37: Осуществляйте настройку, а не интеграцию

 

 

Используйте метаданные для спецификации вариантов настройки приложения: подгонки параметров, глобальных параметров пользователя, каталога, в который производится установка приложения, и т. д.

Так что же такое метаданные? Строго говоря, метаданные – это данные о данных. Наиболее распространенным примером, вероятно, является схема базы данных или словарь данных. Схема содержит данные, которые описывают поля (столбцы) в терминах имен, длины и других атрибутов. Вы должны иметь возможность доступа к этой информации и ее обработки так, как если бы это были любые другие данные в этой базе.

Мы используем этот термин в самом широком смысле. Метаданные – это любые данные, которые описывают приложение – как оно выполняется, какие ресурсы обязано использовать и т. д. Обычно доступ к данным и их использование осуществляется на этапе выполнения, а не компиляции. Вы используете метаданные все время, по крайней мере, это делают ваши программы. Предположим, вы щелкаете мышью для того, чтобы скрыть панель инструментов в интернет-браузере. Браузер будет сохранять эти глобальные параметры как метаданные в своего рода внутренней базе данных.

Эта база данных может быть сформирована в собственном формате или может воспользоваться стандартным механизмом. При работе в операционной системе Windows таким механизмом является либо файл инициализации (используется суффикс .ini), либо записи в системном реестре. При работе с Unix подобная функциональная возможность обеспечивается системой X Window с помощью файлов Application Default. Java использует файлы Property. Во всех этих средах для извлечения значения вы указываете ключ. В других, более мощных и гибких реализациях метаданных используется встроенный язык сценариев (см. "Языки, отражающие специфику предметной области").

При реализации этих глобальных параметров в браузере Netscape фактически использованы обе эти технологии. В версии 3 параметры сохранялись в виде пар "ключ-значение":

 

SHOWTOOLBAR: False

 

В версии 4 параметры больше напоминали JavaScript:

 

user_pref("custtoolbar.Browser.Navigation_Toolbar.open", false);

 

 






Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...





© cyberpedia.su 2017 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.022 с.