Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...
Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...
Топ:
Определение места расположения распределительного центра: Фирма реализует продукцию на рынках сбыта и имеет постоянных поставщиков в разных регионах. Увеличение объема продаж...
Оценка эффективности инструментов коммуникационной политики: Внешние коммуникации - обмен информацией между организацией и её внешней средой...
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Интересное:
Берегоукрепление оползневых склонов: На прибрежных склонах основной причиной развития оползневых процессов является подмыв водами рек естественных склонов...
Как мы говорим и как мы слушаем: общение можно сравнить с огромным зонтиком, под которым скрыто все...
Лечение прогрессирующих форм рака: Одним из наиболее важных достижений экспериментальной химиотерапии опухолей, начатой в 60-х и реализованной в 70-х годах, является...
Дисциплины:
2024-02-15 | 66 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Цель работы: Изучить прямое и обратное преобразование Лапласа, принципы получения передаточных функций и математические операции с ними в программе Matlab.
Задание:
а) По заданному преподавателем варианту (см. таблицу 4.1) выполнить последовательное, параллельное и встречно-параллельное соединение передаточных функций.
б) Получить графики переходных процессов для всех вариантов соединения.
в) Сделать выводы по работе.
Основные положения
Элементы систем автоматического регулирования обычно описываются передаточными функциями.
Передаточной функцией называется отношение изменения выходной величины к изменению входной, преобразованной по Лапласу.
Дифференциальное уравнение, представляющее математическую модель системы регулирования имеет следующий вид:
(4.1)
Где и - входной и выходной сигналы системы регулирования.
Преобразование Лапласа выполняется с помощью формулы:
f(t) – оригинал
F(p) – изображение по Лапласу
В операторной форме это уравнение (1) будет следующим:
, (4.2)
где, – , – изображение входного и выходного сигналов.
Определим передаточную функцию системы регулирования:
. (4.3)
Порядок числа n больше или равно m.
Рассмотрим несколько простых уравнений.
(4.4)
Преобразуем по Лапласу.
(4.5)
Найдём передаточную функцию
(4.6)
Те же операции проделаем и с уравнениями (4.7), (4.10), (4.13).
(4.7)
|
(4.8)
(4.9)
(4.10)
(4.11)
(4.12)
(4.13)
W(p)=K (4.14)
В программе Matlab передаточные функции создаются достаточно легко в строке команд. Например, если в уравнении (4.4) коэффициенты Т1, Т2, К2, К1 равны 2, 5, 1 и 1, то выполняется следующая операция:
>> w1=tf(1,[2 5 1])
Transfer function:
1
---------------
2 s^2 + 5 s + 1
>>
В англоязычных странах оператор Лапласа (p) обозначается (s).
Для уравнения (4.7) при
>> w2=tf([.1 0],[1])
Transfer function:
0.1 S
>>
С передаточными функциями работать значительно проще, чем с дифференциальными уравнениями. Их можно складывать, вычитать, умножать и делить, чтобы потом выполнить обратное преобразование Лапласа (4.15) и получить результирующее уравнение.
(4.15)
В Matlab имеются соответствующие функции прямого «laplace» и обратного преобразования Лапласа «ilaplace». Вычисления выполняются в символьной форме.
Примеры:
>> syms a t w s
>> laplace(exp(-a*t),t,s)
ans =
1/(s+a)
>> w=laplace(exp(-a*t),t,s)
w =
1/(s+a)
>> h=ilaplace(w,s,t)
h =
exp(-a*t)
>>
Как видно, вычисления выполняются корректно и совпадают с табличными.
Арифметические действия (+, -, /, *) с передаточными функциями могут быть выполнены в Matlab.
Пример: Рассмотрим две передаточные функции:
Получим их в строке команд Matlab.
>> w2
Transfer function:
1
----
10 s
>> w1=tf(1,[5 1])
Transfer function:
1
-------
5 s + 1
Выполним сложение.
>> w3=w1+w2
Transfer function:
15 s + 1
-------------
50 s^2 + 10 s
Тот же результат можно получить, применив оператор «parallel» вместо «+», что соответствует правилу сложения передаточных функций при их параллельном соединении.
|
Перемножим заданные функции:
>> w4=w1*w2
Transfer function:
1
-------------
50 s^2 + 10 s
Это же значение можно получить, применив оператор «series» вместо «*», что соответствует правилу умножения передаточных функций при их последовательном соединении.
Если эти передаточные функции соединяются встречно-параллельно (Рис.4.1), то результирующая передаточная функция вычисляется по формуле:
(4.16)
|
Знак «+» в знаменателе при отрицательной обратной связи и знак «-» при положительной.
В программе Matlab для этой операции есть оператор «feedback».
>> w5=feedback(w1,w2)
Transfer function:
10 s
-----------------
50 s^2 + 10 s + 1
Если положительная обратная связь, то в скобках добавляется «-1».
>> w5=feedback(w1,w2, -1)
Для полученных в результате всех операций функций можно построить их графики, если аргументом будет единичное ступенчатое возмущение. Для этого в программе Matlab предусмотрен оператор «step».
>> step(w3),grid on
Результат на рисунке 4.2.
|
>> step(w4),grid on
Результат на рисунке 4.3.
|
>> step(w5),grid on
>>
Результат на рисунке 4.4.
|
Порядок выполнения работы
1) По заданному преподавателем варианту (см. таблицу 4.1) выполнить последовательное, параллельное и встречно-параллельное соединение передаточных функций.
2) Получить последовательное, параллельное и встречно-параллельное соединение передаточных функций.
графики переходных процессов для всех вариантов соединения.
3) Скопировать результаты работы в файл формата *.doc для предъявления отчета и защиты работы.
4) В отчете сделать выводы по работе
Таблица 4.1
Вариант | Функции | Параметры |
1 | 1-я (4.4), 2-я (4.10) | Т1=2, Т2=4, К2=1, К1=2, Ti=12 |
2 | 1-я (4.4), 2-я (4.10+4.13) | Т1= 1, Т2= 5, К2=1, К1= 1, Ti=12, K=5. |
3 | 1-я (4.4), 2-я (4.10+4.13) | Т1= 1, Т2= 15, К2= 5, К1= 1, Ti=7, K=9. |
4 | 1-я (4.4), 2-я (4.7+4.13) | Т1=1, Т2=5, К2=1, К1=1, Td=0. 2, K=5. |
5 | 1-я (4.4), 2-я (4.7+4.13) | Т1= 2, Т2= 10, К2= 2, К1=1, Td=0. 1, K=15. |
6 | 1-я (4.4), 2-я (4.13+4.10) | Т1=0. 2, Т2=5, К2= 2, К1=1, Ti=1 5, K= 2. |
7 | 1-я (4.4), 2-я (4.10+4.13) | Т1= 0.5, Т2= 25, К2=1, К1= 2, Ti= 25, K= 15. |
8 | 1-я (4.4), 2-я (4.13+4.10) | Т1= 0.1, Т2= 7, К2= 0.1, К1=1, Ti=12, K=1. |
9 | 1-я (4.4), 2-я (4.13+4.7) | Т1=2, Т2=3, К2=3, К1=1, Td=0. 1, K= 15. |
10 | 1-я (4.4), 2-я (4.13+4.7) | Т1=0.5, Т2=5, К2=1, К1=3, Td=0.2, K= 7. |
11 | 1-я (4.4), 2-я (4.10+4.13) | Т1=1, Т2= 25, К2= 3, К1=1, Ti=1 0, K= 1. |
12 | 1-я (4.4), 2-я (4.7+4.13) | Т1= 2, Т2= 10, К2= 2, К1=1, Td=0. 1, K=15. |
13 | 1-я (4.4), 2-я (4.10+4.13) | Т1= 1, Т2= 5, К2=1, К1= 1, Ti=12, K=5. |
14 | 1-я (4.4), 2-я (4.7+4.13) | Т1= 2, Т2= 10, К2= 2, К1=1, Td=0. 1, K=15. |
15 | 1-я (4.4), 2-я (4.10+4.13) | Т1= 1, Т2= 50, К2=1 0, К1= 1, Ti=22, K=2. |
16 | 1-я (4.4), 2-я (4.7+4.13) | Т1= 2, Т2= 10, К2= 2, К1=1, Td=0. 1, K=1 1. |
17 | 1-я (4.4), 2-я (4.10+4.13) | Т1=1, Т2=50, К2=1. 2, К1=1, Ti=30, K=5. |
18 | 1-я (4.4), 2-я (4.7+4.13) | Т1=2, Т2=10, К2=2, К1=1, Td=0.1, K=1. |
19 | 1-я (4.4), 2-я (4.10+4.13) | Т1=1, Т2=23, К2=1.5, К1=1, Ti=10, K=7. |
20 | 1-я (4.4), 2-я (4.7+4.13) | Т1=0.4, Т2=10, К2=6, К1=1, Td=0.1, K=12. |
21 | 1-я (4.4), 2-я (4.10+4.13) | Т1=1, Т2=21, К2=1, К1=1, Ti=1 7, K=5. |
22 | 1-я (4.4), 2-я (4.7+4.13) | Т1=0.3, Т2=10, К2=2. 5, К1=1, Td=0.1, K=3. |
23 | 1-я (4.4), 2-я (4.10+4.13) | Т1=0.2, Т2=16, К2=2, К1=1, Ti=15, K=2. |
24 | 1-я (4.4), 2-я (4.7+4.13) | Т1=2, Т2=10, К2=2, К1=1, Td=0.1, K=12. |
25 | 1-я (4.4), 2-я (4.10) | Т1=1, Т2=5, К2=1, К1= 2, Ti=12, K=25. |
Содержание отчета:
|
1. Передаточные функции при последовательном, параллельном и встречно-параллельном соединении заданных передаточных функций.
2. Графики полученных передаточных функций с четкой оцифровкой осей координат.
3. Выводы по работе.
ЛАБОРАТОРНАЯ РАБОТА №5
Исследование
|
|
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой...
Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!