Вопрос 35. Реакция среды почвы. — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Вопрос 35. Реакция среды почвы.

2022-09-11 29
Вопрос 35. Реакция среды почвы. 0.00 из 5.00 0 оценок
Заказать работу

Реакция почвы – физико-химическое свойство, обусловленное содержанием H+ и ОН- в жидкой и твердой частях почвы. Она является важным условием роста и развития растений, оказывает большое влияние на минеральное питание растений, определяет физические и биологические свойства почвы.

Агрохимические свойства характеризуют ППК: реакция почвы (рНН2О – актуальная, рНKCl – обменная, Н – гидролитическая (мг•экв на 100 г почвы), сумма обменных оснований (S, мг•экв на 100 г почвы), емкость поглощения (Е, мг•экв на 100 г почвы), степень насыщенности основаниями (V, %), гумус (%), подвижный фосфор, обменный калий (мг•экв на 100 г почвы).

Реакция почвы обычно проявляется при взаимодействии ее с водой или растворами солей. Почвы могут иметь кислую, нейтральную или щелочную реакцию в зависимости от соотношения концентраций иона водорода (H+) и гидроксида (ОН-). Реакция кислая, если в почве преобладают ионы Н+, и щелочная – если в почве больше ионов ОН-. При равенстве концентраций H+ и ОН- реакция почвы нейтральная. Кислая реакция устанавливается в тех условиях, где осадки преобладают над испарением (леса, тундра), нейтральная – количество осадков и испарение уравновешены (степи луговые, саванны типичные); щелочная – когда испарение преобладает над осадками как в пустынях.

Реакцию раствора обычно определяют по условной величине рН (отрицательный логарифм концентрации H+). Шкала рН имеет значение от 1 до 14. При рН 7 – реакция почвенного раствора нейтральная, ниже 7 – кислая, больше 7 – щелочная.

Различные типы почв имеют и различную реакцию. Ее показатели, (рН) могут колебаться от 3,5 до 9 и выше. Наиболее кислую реакцию имеют верховые торфяники. Кислой реакцией характеризуются подзолистые и дерново-подзолистые почвы. Для черноземов свойственна нейтральная реакция, для каштановых почв, солонцов – щелочная.

Сельскохозяйственные растения предъявляют разные требования к реакции почвы – наиболее благоприятными для большинства культур являются слабокислые или слабощелочные почвы. Нейтрализуют кислую реакцию внесением в почву известняков (СаСО3), а щелочную – внесением гипса (СаSО4). Максимальное количество ионов водорода устанавливается при определении гидролитической кислотности (Н).

С реакцией почв тесно связана и жизнедеятельность почвенных opганизмов. В кислой среде распространена грибная микрофлора. Для бактерий предпочтительной реакцией является реакция, близкая к нейтральной. Таким образом, реакцию почв можно рассматривать как важный экологический признак.

Кислотность почв – свойство почвы, обусловленное содержанием в почвенном растворе Н-ионов, а также обменных ионов водорода и алюминия в почвенном поглощающем комплексе.

Существуют разные источники кислотности почвы. Одной из наиболее распространенных минеральных кислот является угольная кислота, образующаяся при растворении углекислого газа. Значительное подкисление почвенного раствора могут вызвать ненасыщенные катионами гуминовые и фульвокислоты. Последние образуются при разложении остатков хвойной и моховой растительности.

В результате жизнедеятельности грибов и бактерий, разложения растительного опада, выделенные корнями и насекомыми в почве могут присутствовать свободные органические кислоты типа уксусной, щавелевой, лимонной.

В некоторых случаях при выветривании горных пород и минералов могут образовываться и сильные минеральные кислоты – соляная, серная. Существенным источником кислотности могут быть вносимые физиологически кислые удобрения – (NH4)2SO4, KC1 и др.

Повышенная кислотность – явление вредное для растений и полезной микрофлоры. В кислых почвах усложняется поступление кальция в растения, сосуды корневых волосков закупориваются, угнетается деятельность нитрификаторов, азотофиксаторов. Избыточная кислотность увеличивает до токсичных количеств содержание в почве подвижных алюминия и марганца. Кислые почвы бесструктурные, с неудовлетворительными водно-воздушными свойствами. Около 50% почв таежно-лесной зоны имеют избыточную кислотность. Кислотность почв необходимо изучать и регулировать.

Различают две формы почвенной кислотности – актуальную и потенциальную.
Актуальная (активная) кислотность почвы обусловлена наличием водородных ионов (протонов) в почвенном растворе. Определяется обычно при взаимодействии почвы с дистиллированной водой и выражается показателем рН H2O. Показатель актуальной кислотности очень динамичен, нестабилен, зависит от многочисленных реакций, постоянно совершающихся в почве.

Потенциальная кислотность (скрытая, пассивная) обнаруживается при взаимодействии почвы с растворами солей. Природа ее сложная. Носителями потенциальной кислотности являются обменные катионы водорода (H+), алюминия (А13+) почвенных коллоидов.

В зависимости от соли, используемой для выявления потенциальной кислотности, ее подразделяют на обменную и гидролитическую.

Обменная кислотность – та часть потенциальной кислотности, которая обнаруживается при вытеснении из почвы ионов H+ и А13+ растворами нейтральной соли. Обычно для определения обменной кислотности почв используют 1н. раствор КС1 (рН ~ 6,0): [ППК-]H++ КСl → [ППК-]К+ + НС1; [ППК-]А13+ + ЗКС1 → [ППК-]ЗК+ + A1C13. А1С13 – соль слабого основания и сильной кислоты. Гидролитически распадаясь образует соляную кислоту и гидрооксид алюминия: А1С13+ ЗН2О →А1 (ОН)3 + ЗНС1. Образующаяся в растворе кислота оттитровывается – кислотность тогда выражается в мг•экв /100 г, либо определяется величиной рН раствора – рНKCl.

В зависимости от величины рН солевой вытяжки почвы подразделяются на следующие группы: сильнокислые (рН 80%) не нуждаются в известковании, а при V – менее 50%, имеют высокую необходимость в нем.

Известкование – основной прием повышения продуктивности кислых почв. При известковании внесенный СаСО3 (при наличии углекислоты) переходит в растворимый Са(НСОз)2 и взаимодействует с почвой по следующей схеме: [ППК-]2H++ Са(НСО3)2 →[ППК-]Са2++ 2Н2О + 2СО2. Дозу извести обычно рассчитывают по гидролитической кислотности: Н•1,5 = т СаСОз на 1 га, то есть 1 мг•экв гидролитической кислотности на 100 г почвы требуется для нейтрализации 1,5т СаСО3 на 1 га. Дозу СаСО3 для известкования кислых почв можно определить и по обменной кислотности – в зависимости от величины рНКCl и механического состава почвы доза извести может изменяться от 2,0 до 6,0 т СаСО3 на 1 га; при рНКCl 5,6 и выше почвы не известкуют.

Щелочность почв – способность их подщелачивать воду и растворы нейтральных солей. Связана с присутствием в почве гидролитически щелочных солей – Na2CO3, NaHC03, Са(Н2СО3)2 и других, создающих при диссоциации повышенную концентрацию ОН-ионов: Na2CO3 + 2HOH→ H2CO3 + 2Na + 2ОH-.

Различают активную и потенциальную щелочность почвы. Первая связана с наличием гидролитически щелочных солей в почвенном растворе. Потенциальная щелочность обусловлена обменно поглощенным Na. Щелочная реакция угнетает деятельность микроорганизмов, ухудшает структуру и физические свойства почвы, режим питания растений. Ликвидируют избыточную щелочность гипсованием: [ППК-]2Na + CaSO4→ [ППК-]Ca2 + Na2SO4. Образующийся сернокислый натрий может быть вымыт из почвы при выпадении атмосферных осадков или при поливе.

Буферность почв – способность противостоять резкому изменению реакции почвенного раствора при введении в почву кислот и щелочей или их солей. Обусловлена наличием в почве буферных систем, представленных обычно слабыми кислотами (органические, угольная) и их солями. Против подщелачивания буферное воздействие оказывают слабые кислоты, а против подкисления – слабые кислоты и их соли:

 
СНзСОО- + H++ CH3COO- + Na+ + Н+ + Сl- = СН3СООН + NaCl
диссоциация диссоциация диссоциация диссоциация
слабая сильная сильная слабая

 

Против подкисления также сильное воздействие оказывают поглощенные основания, особенно кальций. Высокой буферностью обычно отличаются суглинистые и глинистые почвы, обогащенные гумусовыми веществами. Низкая буферность характерна для песчаных бедных гумусом почв. Эту особенность необходимо учитывать при определении доз удобрений, извести.

 

Вопрос 36. Структура почвы. Образование структуры.

Структурность почвы, ее значение и условия образования. Структура почвы оказывает большое влияние на ее агро­номические свойства и плодородие. Она в значительной мере определяет водный, воздушный, тепловой и питательный режи­мы почв, т.е. главные условия, обусловливающие урожай всех сельскохозяйственных растений. Различают структуру почвы и структурность.

Структура почвы —форма, размер и взаимное расположе­ние структурных отдельностей, на которые естественно распа­дается почва.

Структурность — способность почвы распадаться на агрега­ты, размер и форма которых характерны для каждого типа структуры.

Структурные отдельности носят название почвенные агре­гаты. Они являются естественной сложной почвенной отдель­ностью, образовавшейся из микроагрегатов или элементарных почвенных частиц в результате их взаимодействия под влия­нием физических, химических, физико-химических и биологи­ческих процессов.

По форме структурных отдельностей выделяют три типа структуры:

1. Кубовидная — структурные отдельности равномерно раз­виты в трех позициях, например, глыбистая, комковатая, ореховатая и зернистая.

2. Призмовидная — развитие вертикальных граней и ребер структурных отдельностей преобладает над горизонтальными, такими как столбовидная, столбчатая, призматическая.

3. Плитовидная — структурные отдельности имеют преоб­ладающее развитие горизонтальных граней и ребер, напри­мер, плитчатая, чешуйчатая.

В зависимости от размера выделяют группы структур (П.В. Вершинин):

1 — мегаструктура (глыбистая) >10 мм;

2 — макроструктура 10-0,25 мм;

3 — грубая микроструктура 0,25-0,01 мм;

4 — тонкая микроструктура <0,01 мм.

С агрономической точки зрения, наиболее ценной являет­ся мелкокомковатая, или зернистая водопрочная структура, с размерами агрегатов в пределах от 0,25 до 1,0 мм. В почве с такой структурой создаются оптимальные воздуш­ные и водно-физические условия для развития корневой си­стемы растений, что способствует интенсивному развитию микробиологической активности и мобилизации питательных веществ.

Структура может нарушиться в результате влияния многих факторов:

1. Изменение внешних условий — действие дождя или вет­ра, колебание температур — постоянно приводит к разруше­нию структурных отдельностей.

2. Обработка почвы плугами и другими сельскохозяйствен­ными орудиями вызывает крошение, распыление почвы.

3. Изменение физико-химических свойств почв может при­вести почву в бесструктурное состояние, например, к измене­нию состава обменных катионов. Так, натрий в ППК вызывает диспергирование почвенных коллоидов, что ведет к разруше­нию агрегатов и структурных отдельностей.

4. Минерализация гумусовых компонент структурных от­дельностей до конечных продуктов СС>2, Н2О и минеральных солей приводит к разрушению гумуса, при этом утрачивается водопрочность структуры.

В результате действия названных выше процессов почва может превратиться в бесструктурную массу.

Бесструктурная почва — это почва, в которой отдельные механические элементы не соединены между собой в почвен­ные агрегаты, а существуют отдельно или залегают одной сплошной сцементированной массой. Типичный пример бес­структурной почвы — рыхлый песок или слитые иллювиаль­ные горизонты тяжелых по механическому составу почв.

Минералогический состав отдельных фракций механиче­ских элементов также сильно различается. В физическом песке преобладают первичные минералы, а в фи­зической глине — вторичные глинистые минералы.

С агрономической точки зрения особый интерес представляет мелковатая и зернистая структура с размером частиц 0,25 – 10 мм. Одновременно эта структура должна быть пористой, механически упругой прочной и водоупорной. Особое значение наряду с водоупорностью приобретает оптимальная пористость структурных агрегатов. Например, в черноземной почве пористость агрегатов находится на уровне 50% их объема.

Большое значение имеет механическое разделение почвенной массы на комки (агрегаты), которое в природных условиях происходит под воздействием корневых систем растений, жизнедеятельности биоты почвы, под влиянием периодических промораживания – оттаивания, увлажнения и высушивания почвы, а в обрабатываемых землях под воздействием почвообрабатывающих орудий.

Состояние структуры почвы непосредственно определяет параметры строения пахотного слоя. Капиллярная пористость агрегатов в структурной почве дополняется высокой некапиллярной пористостью межагрегатных промежутков. В структурной почве поддерживается наиболее благоприятное соотношение между объемом твердой фазы и общей пористостью почвы. Заданное, агрономически наиболее благоприятное строение пахотного слоя устойчиво поддерживается почвой в течение длительного времени. Почва сохраняет наиболее благоприятный интервал оптимальной плотности, который не выходит за пределы равновесной. В такой почве создаются благоприятные условия для поддержания оптимальных для возделывания растений водно-воздушного и теплового режимов. В глубоком пахотном слое количество нитрифицирующих микроорганизмов, а также почвенной фауны значительно больше. В нем увеличивается содержание подвижных форм фосфора и калия. Благоприятный комплекс почвенных условий, создающихся в глубоком пахотном слое, сильно влияетна развитие корневых систем растений, а, следовательно, и на урожай.

Способность почвы к устойчивому обеспечению растений водой зависит от агрофизических факторов плодородия. Конкретное действие агрофизических факторов по отношению к воде проявляется через водные свойства почвы: водоудерживающую способность, влагоемкость, водопроницаемость и водоподъемную способность.

Одним из приемов, уменьшающих непроизводительные потери воды из почвы, является мульчирование поверхности почвы, широко применяющееся в овощеводстве. Для мульчирования применяют торф, солому, навоз, опилки и др.

Образование почвенной структуры происходит за счет двух обычно одновременно протекающих процессов. Один из них заключается в механическом разделении почвенной массы на агрегаты различного размера и формы. Второй процесс представляет собой формирование внутреннего строения и свойств агрегатов — пористости, водопрочности, связности. Процессы структурообразования осуществляются под влиянием физико-механических, физико-химических химических и биологических факторов.

Физико-механические факторы. С ними связано разделение почвенной массы на структурные отдельности в результате изменения объема, давления и механического воздействия. формирование агрегатов происходит вследствие чередующихся процессов увлажнения и иссушения, замерзания и оттаивания почвы, деятельности роющих животных, под воздействием давления, оказываемого растущими корнями растений, а также почвообрабатывающих орудий.

Важным структурообразующим фактором служит чередование процессов увлажнения и иссушения почвы. При увлажнении почва набухает и увеличивается в объеме. Чем выше степень дисперсности почвенных частиц, тем сильнее изменяется объем. При иссушении почвы происходит обратный процесс, т. е. ее усадка.

Поскольку процесс усадки не равномерен во всех направлениях, то образуются трещины, расчленяющие почвенную массу на отдельности различного размера. На характер усадки и образования трещин сильно влияет гумусированность почв. увеличение содержания гумуса сопровождается нарастанием трещиноватости, но лишь до определенного предела. При содержании гумуса в почве выше 10% во многих случаях количество трещин уменьшается.

Процессы увлажнения и иссушения в почвах происходят достаточно часто. Особенно сильно влажность изменяется в самой верхней части почвы, где и выражено в наибольшей мере образование трещин и структурных отдельностей. В почвах, богатых минералами группы монтмориллонита, эффект попеременного увлажнения и иссушения проявляется в глубоком растрескивании почв с обособлением крупных полигональных отдельностей. Образующиеся трещины достигают нескольких сантиметров в ширину и уходят в глубь почвы на м и более. По этим трещинам активно поглощаются ливневые воды, ко в то же время из них легко выдуваются пары воды, что приводит к иссушению почвы.

Широко распространено вертикальное и горизонтальное растрескивание почв при их периодическом замерзании и оттаивании. При замерзании объем воды увеличивается, связи в почвенной массе разрываются и образуется сеть трещин. При этом вода замерзает неравномерно. В крупных порах лед начинает образовываться при температуре 0-20С, в мелких порах - при температуре - 4-50С. В результате образуются трещины разных размеров и по различным направлениям, что приводит к образованию структурных отдельностей в процессе оттаивания почвы. При этом важное значение имеет степень увлажнения почвы.

 

 

Если при наступлении отрицательных температур почва была близка к полному иссушению, то образование льда будет незначительным. Его влияние на объемные изменения в почве проявляется слабо или не выражено вообще.

В переувлажненной почве, когда все поры заполнены водой, образование льда происходит практически одновременно во всем объеме. Это ведет к фиксации почвенной массы, благодаря чему трещины не образуются. В этом случае при оттаивании почва приобретает киселеобразную консистенцию и обесструктуривается. Наиболее существенное структурообразование наблюдается при некоторой средней степени увлажнения почвы, когда вода заполняет только капиллярные поры, поскольку поры, заполненные воздухом, не препятствуют объемным расширениям при образовании льда. Больше всего агрегатов от промораживания суглинистого чернозема наблюдается при влажности 25-30% от массы почвы. При увеличении влажности до 50 % к массе почвы влияние промораживания на структурообразующие приближается к нулю.

В оптимально увлажненных почвах в качестве оструктуривающих факторов выступают капиллярные (менисковые) силы и связанная вода. Их агрегирующая роль проявляется при высыхании почвы, так как при этом мениски и адсорбированная вода способствует сужению капилляров и сближению механических элементов. После этого атомные и молекулярные силы притяжения между частицами почвы проявляются сильнее.

На структуру сильно влияет механическая обработка почвы с помощью сельскохозяйственных орудий. В зависимости от содержания органического вещества, гранулометрического состава, применяемого орудия и других условий, при которых производится обработка, в почве преобладают процессы создания или разрушения структуры даже на одной н той же почве, применяя одно орудие обработки) можно получить структурную или бесструктурную пашню. Это зависит от того, при какой влажности почвы произведена обработка. С давних времен известно, что при определенной степени увлажнения любая почва приобретает особые свойства, вследствие чего она лучше поддастся обработке. Состояние почвы, при котором механическая обработка наиболее эффективна, называют физической спелостью.

Почва, находящаяся в стадии физической спелости, лучше всего крошится, не прилипает к рабочим органам орудий и не распыляется. При обработке такой почвы энергетические затраты наименьшие. Обрабатывая почву соответствующими орудиями при определенной влажности, можно весьма существенно улучшить ее структурное состояние. Поэтому наиболее массовым и широкодоступным способом оструктуривания почв считается механическая обработка в состоянии физической спелости.

Необходимо учитывать, что существует не точка оптимальной влажности структуро - образования, а интервал такой влажности, причем для каждой почвы он будет индивидуальным. Так, в высокогумусных и тяжелых по гранулометрическому составу почвах интервал оптимальной влажности выше и шире, в легких н малогумусных почвах — ниже и меньше. Например, если в черноземах интервал влажности, оптимальный для структурообразования, в среднем составляет 30-40 % от массы сухой почвы, то в подзолистых почвах - 15-20%. От влажности почвы зависят и размеры образовавшихся агрегатов. В начале интервала влажности, оптимального для сруктурообразования, образуются более мелкие агрегаты) а в конце - более крупные.

Обработка искусственной или переувлажнённой почвы не обеспечивает ее эффективное крошение и формирование агрегатов необходимого размера, в результате чего образуется бесструктурная пашня. Крошение почвы и образование агрегатов обусловлены деформациями, возникающими в почвенной массе в результате ее скалывания лемехом, изгиба и кручения пласта по поверхности отвала, в процессе обработки существенная деформация почвы происходит при падении почвенной массы с отвала плуга в борозду.

Трещины, наметившиеся в результате природных процессов и усиливающиеся при кручении и изгибе пласта, служат основой для распада почвы на агрегаты. Но эти явления возможны только в определенных интервале влажности почвы. В чрезмерно сыром состоянии масса почвы при падении в борозду слипается в иссушенном состоянии почва не распадается на агрегаты из-за прочного сцепления частиц и микроагрегатов при вспашке такой почвы образуются крупные глыбы, разрушение которых весьма затруднительно и требует значительных энергетических затрат. Однако с помощью одной механической обработки нельзя создать водопрочную структуру почвы, так как она формируется под влиянием физико-химических, химических и биологических факторов.

Физико-химические факторы. Образование структурных отдельностей под влиянием этих факторов связано с коагуляцией и цементирующим действием почвенных коллоидов. Агрегаты формируются или при взаимном соосаждении коллоидов, или вследствие коагуляции их электролитами.

Взаимное осаждение коллоидов происходит при взаимодействии разноименно заряженных коллоидных частиц или их участков, несущих противоположные заряды. В результате слипания коллоиды коагулируют, образуя микроагрегаты первого порядка. Поскольку коагуляция коллоидных частиц редко происходит в изоэлектрической точке, первичные микроагрегаты сами несут остаточный заряд — Положительный или отрицательный. Разноименно заряженные микроагрегаты притягиваются, образуя микроагрегаты второго, третьего и т. д. порядков, включительно до мелких зерен.

В почвах коагуляция коллоидов чаще всего происходит под влиянием ионов-коагуляторов, таких как Н+, Са2+, Mg, Fe, Fl. Адсорбируясь в компенсирующем слое, они уменьшают величину заряда коллоидов, которые коагулируют и слипаются друг с другом с образованием микроагрегатов. Агрегирование коллоидных частиц осуществляется за счет сил Ван-дер-Ваальса, катионовых мостиков, остаточных валентностей, водородной связи.

Скоагулированные коллоиды не только формируют микроагрегаты, но и способствуют скреплению более крупных частиц — пылеватых и песчаных, а также уже сформированных микроагрегатов.

Важнейшее условие образования агрономически ценной водопрочной структуры — необратимая коагуляция коллоидов. Она происходит под влиянием двух- и трёхвалентных катионов. При насыщении диффузного слоя коллоидов натрием и другими одновалентными катионами необратимой коагуляции коллоидов не происходит. Поэтому при участии таких коллоидов в склеивании частиц песка, пыли и микроагрегатов агрономически ценная структура не образуется. Хотя в сухом состоянии агрегаты имеют высокую прочность, при увлажнении они легко разрушаются из-за перехода коллоидов в золь.

Прочно скрепляют механические элементы в агрегаты органические коллоиды, особенно гуматы кальция. Хорошими структурообразователями считаются гели железоорганических комплексов. Агрегаты, образующиеся при участии только минеральных коллоидов, водопрочностью не обладают. Наиболее водопрочная структура образуется при взаимодействии гуматов кальция с минералами группы монтмориллонита и гидрослюдами, менее водопрочная - с каолинитом, кварцем, аморфной кремниевой кислотой. В оструктуривании красноцветных почв и красноземов важную роль играют соединения железа и алюминия.

Химические факторы.

Роль химических факторов в оструктуривании почв заключается в образовании труднорастворимых соединений, цементирующих почвенные агрегаты. Эти соединения могут склеивать микроагрегаты и механические элементы, находящиеся в раздельно-частичном состоянии, к ним относят аморфные гидроксиды железа и алюминия, карбонат кальция, силикат магния и другие.

В почвах с временным избыточным увлажнением отчетливо проявляется оструктуривающее действие соединений железа. При переувлажнении в почве развиваются восстановительные процессы, сопровождающиеся образованием водорастворимых закисных форм железа, пропитывающих почвенные агретаты. В случае подсыхания почвы и смены восстановительных процессов на окислительное двухвалентное железо переходит в нерастворимые соединения трехвалентного железа, которые цементируют почвенные агрегаты. Такая структура характеризуется высокой механической прочностью и водопрочностью, однако отличается пониженной пористостью (<40%), поскольку часть объема пор постепенно заполняется Fе(ОН)3.

В почвах аридных зон аналогичную роль играет СаСО3, образующийся при иссушении почвы из подвижного гидрокарбоната кальция:

Са(НСО3)2 → СаСО3 + Н2О + СО2.

Возможна цементация почвенных агрегатов Са3(РО4)2 при образовании его из растворимых фосфатов.

Биологические факторы. Растения и животные населяющие почву, играют главную роль в структурообразовании, оказывая комплексное влияние на этот процесс деятельность почвенных животных можно рассматривать как своеобразную механическую обработку почвы. Почва, подвергшаяся обработке животными, как правило, отличается тончайшей структурой, большой гомогенностью и однородностью. В некоторых случаях деятельность животных оказывается более результативной, чем применение сельскохозяйственных орудий, так как ими обрабатывают чаще всего только пахотный слой, а животные нередко проникают и за его пределы, иногда на глубину более 1 м.

Большую роль в структурообразовании играют дождевые черви. Почва, прошедшая через кишечный тракт дождевых червей, уплотняется склеивается слизью, обогащается углекислым кальцием. Почву, переработанную таким образом, черви выбрасывают в виде мелких комочков — копролитов характеризующихся высокой водопрочностью структуры, созданная дождевыми червями, легко отличима по форме. Она, как правило, округлая, поверхность имеет своеобразный «оплавленный» характер.

При наличии 12-15 червей на 1 м2 почвы они за год перерабатывают до 20 т/га земли. Гигантские и пестрые дождевые черви, обитающие в серых лесных почвах и черноземах Северо-Западного Китая, за теплый период года пропускают через кишечный тракт и оструктуривало от 170 до 225 т/га почвенной массы. При такой активной деятельности дождевых червей копролиты играют заметную роль в агрегатном составе почвы. Так, в целинных обыкновенных черноземах Каменной Степи на долю агрегатов, представленных копролитами приходится до половины от суммы всех структурных отдельностей. Воздействие дождевых червей на структурообразование столь существенно, что их специально разводят и в последующем вносят в почву.

Исключительно важная роль в оструктуриваннии почвы принадлежит растениям. Корневая система растений служит эффективно действующим фактором расчленения почвенной массы на структурные отдельности. Пронизывая почвенную массу во всех направлениях, корни расчленяют и уплотняют ее, действуя как своеобразные клинья. Даже сравнительно плотная почва во влажном состоянии не оказывает сопротивления прохождению корней. По густой сети полых пространств разнообразной конфигурации, остающейся после отмирания и разложения корней, почва способна распадаться на агрегаты различного размера и формы.

Роль растений в структурообразовании не ограничивается только механическим воздействием на почву. При разложении растительных остатков образуются различные неспецифические органические соединения, принимающие участие в агрегировании почвенной массы, и гумусовые кислоты, играющие ведущую роль в формировании водопрочных агрегатов. Немаловажную роль в образовании структуры играют прижизненные корневые выделения. В их состав входят разнообразные органические соединения, а общее их количество за период вегетации может достигать 10 % и более от растительной биомассы.

В зоне распространения корневой системы растений широко представлена ризосферная микрофлора. Коллоидные продукты жизнедеятельности и автолиза микроорганизмов обладают цементирующим началом и активно участвуют в структурообразовании. Наиболее сильно на структуру почвы влияет многолетняя травянистая растительность, отличающаяся мошной хорошо разветвленной корневой системой. Поэтому там, где создаются благоприятные условия для ее развития, встречаются хорошо оструктуренные почвы, что наглядно проявляется в зональном аспекте.

Наиболее водопрочной структурой характеризуются целинные черноземы, где оптимально сочетаются природные факторы структурообразования — хорошо развитая травянистая растительность, высокое содержание гумуса, в составе которого заметно преобладают гуматы кальция, обогащенность илистой фракции гидрослюдами и минералами монтмориллонитовой группы, активная микробиологическая деятельность и др. К северу и югу от черноземной зоны условия для формирования агрономически ценной водопрочкой структуры ухудшаются.

При переходе от черноземов к подзолистым почвам складываются все более неблагоприятные условия для произрастания травянистой растительности, которая в конечном итоге сменяется хвойными лесами. Возрастает кислотность почв, снижается содержание гумуса, в составе которого начинают преобладать подвижные компоненты типа фульвокислот и низкомолекулярных органических соединений, ухудшаются условия для микробиологической деятельности и необратимой коагуляции коллоидов.

В южном направлении от Черноземной зоны усиливается дефицит влаги, вследствие чего происходит смена растительных группировок. В почвах ухудшаются условия гумусообразования.

Обесструктуривание пахотных почв происходит и в результате многократного и интенсивного воздействия на почву тяжелой сельскохозяйственной техники. При воздействии техники на сухую почву происходит истирание и распыление структуры. После выпадения атмосферных осадков такая почва заплывает, а при последующем иссушении формируются крупные глыбы. Влажная почва под влиянием тяжелой техники спрессовывается, а при подсыхании также распадается на крупные глыбистые отдельности. При разрушении структуры под воздействием тяжелой техники снижается пористость почв, вплоть ло полного исчезновения водо- и воздухопроводягцих пор.

Физико-химические процессы. Их участие в обесструктуривании почв проявляется через реакции ионного обмена, в результате которых двухвалентные катионы в ППК замещаются на одновалентные. Вследствие этого при увлажнении почвы происходит пептизация коллоидов, в первую очередь гумусовых веществ, прочно скрепляющих механические элементы и микроагрегаты, что ведет к разрушению почвенной структуры.

Биологические процессы. Обесструктуривание почв под влиянием биологического фактора отчетливо проявляется при экстенсивном использовании пашни. Когда в почве ежегодно отмечается дефицит свежего органического вещества, микроорганизмы начинают утилизировать не только лабильные, но и более устойчивые гумусовые соединения — главный клеящий компонент при образовании почвенных агрегатов. Минерализация органических соединений, участвующих в образовании структуры, особенно активно протекает при оптимальном для микрофлоры водно-тепловом режиме и достаточном количестве элементов минерального питания.

 


Поделиться с друзьями:

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.074 с.