Почвоведение как отрасль естествознания, его предмет, история и значение. — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Почвоведение как отрасль естествознания, его предмет, история и значение.



Цвет.

Отражает химизм образования. Темная окраска связана с наличием органического вещества – гумуса.

Красноземы – наличие окисного железа: Fe2O3 Fe(III)

Бурый – есть железо, но меньше, чем в красном.

Желтоземы < Fe2O3; буроземы.

Сизо-голубой - FeO - закисные формы Fe(II), когда перенасыщены влагой. Переход окиси в закись: Fe2O3 → FeO

Fe(III) → Fe(II) (окись → в закись).

O2 H2O → H2O O2 (Оглеение).

Светло-серые: 1. SiO2 (кремнезем) (> 90%). 2. CaCO3 (кальцит). 3. (NaCl, KCl, CaCl) (хлориды).

2. Новообразования.

Соединения, которые возникают в процессе развития почвы. Различны по химизму и морфологии. Лесные почвы: новообразования железисто – марганцевого состава FeMn. Сцементированные прослойки железа и марганца в песках – ортзанд. Ортштейн – железисто – марганцевые конкреции. Характерны для заболоченных глинистых и суглинистых почв. Лесные почвы – карбонатные новообразования – могут быть в виде присыпки, в виде конкреций, пустотелые. для степных лесостепных, полупустынных почв. CaCO3 – гипсовые новообразования CaSO4 – характерны для пустынных регионов.

Включения.

Инородные тела, несвязанные с почвообразованием. Литогенные – камни: галька, щебень; биогенные – древесные корни, кости животных, уголь; антропогенные – керамические черепки посуды и т. д.

Структура.

Способность почвы распадаться на отдельные камни, глыбы – структурность. Камни, глыбы – структурные отдельности. Песчаные почвы – бесструктурные. Гумусовые почвы – преобладают структурные отдельности. Структура препятствует эрозии (ветровой и водной). Структура способствует накоплению и удержанию влаги в почвах. В структурной почве вода не испаряется, так как она просачивается глубоко. В бесструктурной всё наоборот.

Сложение.

Определяется плотностью почвы. (Почва сожжет быть мягкая, плотная, уплотненная).

Почвенный профиль.

Профили состоят из горизонтов

В.В. Докучаев. А – поверхностный слой, В – переходный горизонт, С – материнская порода.

A
B
C

Изначально был грунт (материнская порода)→растительность.

I. Органогенные горизонты.

(Ао – лесная подстилка, кора листья, поля – степной или травянистый войлок).

Аоv – лесная подстилка (хвоя, листья + зеленые мхи).

Ат – торфяные горизонты.

II. Органоминеральные горизонты. Много органики и минерального вещества.

А А1 – аккумулятивный горизонт (гумусовый)

Аd – дерновой горизонт (где травянистая растительность) не менее 56% органики.

Аn – пахотный горизонт.

III. Почвенные минеральныегоризонты.



А2 подзолистый горизонт (напоминает цвет золы потухшего костра)

Элювиальный (вымывания), до 99 % SiO2 - остальное вымыто. Характерен для лесных почв.

G – глеевый горизонт – характеризуется сизовато-голубоватой окраской. (FeO, Fe (II))

B – иллювиальный (вмывания).

Bf – железисто-иллювиальный (яркая бурая окраска- обилие железа)

Bh – гумусово-иллювиальный горизонт.

Bfh – железисто-гумусово-иллювиальный горизонт.

Bca – карбонатно-иллювиальный горизонт.

Bt – глинисто-иллювиальный горизонт. Характерен для почв, которые формируются в условиях с большим количеством осадков (гумидных). Лессиваж - миграции глинистых фракций из верхних слоев в средние.

Bm – иллювиально-метаморфический горизонт. Интенсивное внутрипочвенное выветривание.

Биологическое выветривание.

- Разрушение горных пород под влиянием растительных организмов.

Биологическое выветривание – биохимическое выветривание. Лишайники (литофильные) поселяются на горных породах, своими ризоидами выделяют кислоты, которые взаимодействуют с минералами, входящими в состав горных пород.

В процессе 3-х выветриваний:

1. Образуются материнские породы, на которых формируются почвы.

2. В процессе выветривания питательные элементы из недоступных форм переходят в доступные.

3. Увеличивается удельная поверхность вещества, которая способствует выходу питательных элементов в окружающую среду.

4. Изменение горных пород сопровождается изменением физических свойств: водопроницаемость, воздухопроницаемость, теплопроводность.

5. Измельчение горных пород определяет возможность поселения на продуктах выветривания древесных и травянистых растений.

 

 


4. Механический состав почв, его влияние на почвообразование. Классификация почв по гранулометрическому составу.

Твердая фаза почв представлена продуктами выветривания (обломки горных пород). Гранулы – продукты выветривания. Гранулы > 1мм. – скелет;



Гранулы < 1мм – мелкозем.

Мелкозем подразделяется по размерам частиц на 3 фракции:

1. Песчаная фракция: 1–0.01 мм. Преобладает SiO2 .

2. Пылеватая фракция: 0.01–0.001мм.

3. Илистая фракция < 0.001 мм. Вторичные минералы.

Механический или гранулометрический состав – фракций мелкозема выраженное в % по отношению к его общей массе.

Классификация механического состава Качинского.

Механический состав Содержание песчаной фракции в %. Содержание физической глины в % (ФГ)
1. Песчаная H2O >90% <10% ПЛМС
2. Супесчаная O2 90-80 10-20% ПЛМС
3. Легкосуглинистая Самые плодородные 80-70 20-30% Пср МС
4. Среднесуглинистая Самые плодородные 70-60 30-40% Пср МС  
5. Тяжелосуглинистая H2O 60-50 40-50% ПТМС оглеение
6. Глинистая O2 <50 >50% ПТМС оглеение

 

1 и 2 – имеют лёгкий механический состав (тёплые); 2 и 3 – средний (самые лучшие почвы); 4 и 5 – тяжелый (холодные).

ФГ – илистая фракция + пылеватая фракция в %.

Механический состав влияет на плодородие почв. K, P,Ca,Mg илистая и пылеватая фракции.

Чем тяжелее механический состав почвы, тем плодороднее почва (потенциально), но с другой стороны механический состав влияет на вводно-воздушный состав. Почвы ЛМС – бедны питательными элементами.

Плодородие определяет механический состав:

1. Наличие питательных элементов.

2. Водно – воздушные свойства почв.

3. Емкость поглощения (чем больше илистой фракции, тем выше емкость поглощения).

4. Сроки посева и созревания с/х. культур.

5. Себестоимость с/х продукции. Песчаные легче перекопать → нужно меньше бензина.

 

5. Гидроклиматические факторы почвообразования.

Климат оказывает прямое и косвенное воздействие на почву. Почвообразование идет при положительных температурах. При повышении температуры на каждые 10 градусов скорость химических реакций повышается в 2 раза.

Косвенное воздействие: показатель – сумма активных температур.

Σ ≥ +10о

135 – сред. Суточная 10 градусов; 135 * 10=1350о сумма активных температур.

Осадки. Ку = осадки/испарение; К.у.= 750/400=1.8

К.у. > 1.0губительно малоплодородные почвы.

К.у. = 1.0 норма

К.у. < 1.0 недостаток.

Климат

К числу важнейших факторов почвообразования относится климат. С ним связаны тепловой и водяной режимы почвы, от которых зависят биологические и физико-химические почвенные процессы. Под тепловым режимом понимают совокупность процессов теплообмена в системе “приземный слой воздуха — почва — почвообразующая порода”. Тепловой режим обуславливает процессы переноса и аккумуляции тепла в почве. Характер теплового режима определяется главным образом соотношением поглощения радиационной (лучистой) энергии Солнца и теплового излучения почвы. Он зависит от окраски почвы, характера поверхности, теплоемкости, влажности и других факторов. Заметное влияние на тепловой режим почвы оказывает растительность.Этот фактор способствует распределению почв (так же, как и растительности) по широтным зонам. Так, в тундровой зоне выделяются специфические тундровые почвы, в таежной – подзолистые, в зоне широколиственных лесов – серые лесные, в степной – черноземы и т.д. Это значит, что температура и количество осадков влияют на почвообразование (рис. 1).

Водный режим

Водный режим почвы в основном определяется количеством атмосферных осадков и испаряемостью, распределением осадков в течение года, их формой (при ливневых дождях вода не успевает проникнуть в почву, стекает в виде поверхностного стока).

Климатические условия

Климатические условия оказывают косвенное влияние и на такие факторы почвообразования, как почвообразующие породы, растительный и животный мир и др. С климатом связано распространение основных типов почв.

 

Рис. 1. Изменение климатических показателей, растительности и почв на профиле от тундры до пустыни (зачернен гумусовый горизонт)

 

 

 

6. Роль материнских пород и рельефа в почвообразовании.

Рельеф. Поверхность земной коры неоднородна. Она представляет собой, грубо говоря, чередование понижений и возвышенностей. Если превышения между крайними точками рельефа лежат в пределах от сотен метров до нескольких километров, говорят о макрорельефе; от нескольких до десятков метров – о мезорельефе; от десятков сантиметров до 1 м – о микрорельефе. Вдоль макрорельефа распределяются температура, осадки и другие климатические факторы, а вдоль микрорельефа – напочвенная растительность и характер подстилки. Когда говорят о распределении почв по рельефу, то, как правило, имеют в виду мезорельеф. Верхние и нижние части склонов различаются между собой по условиям почвообразования. В верхних частях почвы обычно получают воду в основном из атмосферных осадков, в нижних – преобладает питание от грунтовых вод. В связи с этим почвы низин часто бывают переувлажнены или заболочены, а почвы верхних частей мезорельефа – сухими или свежими (средне увлажненными). Кроме того, вниз по склону происходит постоянный вынос частиц за счет внутрипочвенного стока, что приводит к формированию элювиоделювиального комплекса (см. ниже).

Материнская порода. Горная порода, на которой началось образование почвы, называется материнской породой. В зависимости от происхождения различают осадочные, обломочные и метаморфические горные породы. Осадочные сформировались в результате выхода на дневную поверхность морских или озерных отложений; обломочные – в результате переотложения материала физического и химического выветривания изначально монолитной горной породы, метаморфические – в результате выхода на дневную поверхность мантийного вещества.
Разные породы различаются по своим физическим и химическим свойствам, что обуславливает формирование на них различных почв. В пределах умеренной зоны Евразии на поверхности залегают следующие виды материнских пород.

1. Морена. Представляет собой горную породу ледникового происхождения. Ледники переносят огромное количество обломочного материала разного размера – от тонких (глинистых или пылеватых) частиц до крупных валунов. Морены бывают различные (рис. 2). Одни из них были аккумулированы в самом теле ледника и сформировались in situ при его таянии. Такова основная морена. В конце ледникового языка (или покровного щита) образуется конечная морена, представляющая собой груду обломочного материала, которую принес ледник. При долгом стоянии ледника на одном месте лед стаивает и весь обломочный материал скапливается у его края, образуя валы и целые гряды. Такова, например, Клинско-Дмитровская гряда, представляющая собой конечную морену времен Московского оледенения (рис. 3). Морена – не сортированная порода. В ней перемешаны частицы различного размера – от глинистых до валунов. Как правило, она суглинистого механического состава и красно-бурого цвета, бескарбонатна.

2. Покровные суглинки и глины. Так же, как и морена, образовались при таянии ледника. Однако в отличие от морены их образование связано с ледниковыми водами, поэтому они хорошо сортированы и в них отсутствуют валуны. Покровные суглинки и глины всегда приурочены к вершинам возвышенностей мезорельефа в средней полосе европейской части России. Как уже было сказано, в них отсутствуют валуны, цвет всегда желто-бурый (не имеет красноватого оттенка), бескарбонатны, более богаты микроэлементами, чем морены.

3. Флювиогляциальные отложения. Представляют собой песчаные или супесчаные водно-ледниковые наносы. Во время таяния ледника в его ложбинах собирались талые воды, которые образовывали целые реки с разветвленной сетью притоков. Эти водные потоки обладали значительной мощностью, основное русло местами могло пролегать на поверхности ледника, местами – заглубляться в трещины и каналы, доходившие до дна ледника, образуя подледниковые потоки. Эти потоки размывали основную морену, захватывая легкие частицы (глинистые, песок и мелкие обломки), перенося их на значительные расстояния, сортируя и откладывая в другом месте. В зависимости от условий образования и морфологических особенностей выделяют три вида флювиогляциальных отложений. Это зандры, камы и озы.

Зандры(от лат. sandur – песок) – это пологоволнистые равнины, сформировавшиеся в результате отложения частиц в местах выхода подледниковых вод на поверхность за конечной мореной (рис. 4). Вытекавшие из-под края ледника потоки широко разливались по лежащей за ним равнине. При этом сразу за конечной мореной откладывались наиболее крупные частицы (галька), далее – на широких площадях – пески и в нижнем течении таких потоков, где скорость воды наименьшая, – покровные суглинки и глины. Таким образом, в зандровых равнинах по площади преобладают песчаные отложения. Типичным примером зандровой равнины может служить Мещерская низменность, сформировавшаяся при таянии Московского ледника.

Камы– хаотически разбросанные холмы высотой 10–20 м, напоминающие моренные холмы, но отличающиеся от них внутренним строением. Они составлены хорошо отсортированным песком, часто чередующимся со слоями глины или гальки. Такое строение объясняется деятельностью стоячих ледниковых вод, скапливавшихся в ложбинах ледника, так что образовывались ледниковые озера.

Озы– это вытянутые по направлению движения ледника узкие песчаные гряды или валы, длина которых колеблется от нескольких сот метров до нескольких километров, а высота – от 5 до 50 м (рис. 5). Предполагается, что образование оз связано с отложением песчаного материала морены во внутриледниковых каналах.

Флювиогляциальные отложения являются наиболее бедными из всех ледниковых отложений.

4. Лёссы и лессовидные суглинки. Лесс представляет собой горную породу эолового (ветрового) происхождения. Он образован пылеватыми частицами, содержит до 70% карбоната кальция, светло-желтого цвета, с большим количеством пор. Лессы образуются по краям пустынь и в степях. Лессы Восточной Европы образовались, по всей видимости, во время Днепровского оледенения. Лессы Средней Азии и Китая имеют более раннее – плиоценовое – происхождение. Лессовидные суглинки отличаются от лессов более северным географическим положением (северные степи, отчасти – зона широколиственных лесов), более темным цветом, меньшим количеством пор, меньшим содержанием кальция. Лесс и лессовидные суглинки обладают самыми лучшими лесорастительными свойствами.

5. Ленточные глины. Представляют собой донные отложения ледниковых озер. Имеют слоистую структуру: в них наблюдается чередование более светлых и более темных слоев. Образование слоев связано с сезонной динамикой озерных отложений. Летом озеро принимает в себя сток ручьев и речек, несущих частицы различного размера – от тонких илистых до более крупных песчаных, которые оседают на дне озера. Зимой же сток замедлен, поэтому на дно откладывается только тонкий илистый материал.

6. Озерные отложения.Донные отложения озер, сформировавшиеся в условиях более теплого климата, чем предыдущая порода. В них отсутствует слоистость, они имеют глинистый или тяжелосуглинистый механический состав, как правило, красноватый цвет.

7. Морские отложения. Донные отложения морей прошлых геологических периодов, вышедшие на дневную поверхность. Представляют собой довольно богатые микроэлементами глины различного цвета (белого, черного, красного, синего), известняк или мел.

8. Эоловые отложения. Скопления частиц, переотложенных в результате пыльных бурь, ураганов и тому подобных явлений, связанных с деятельностью ветра. Распространены в аридных районах (пустыни, степи) и по берегам морей. К эоловым отложениям относятся, например, песчаные дюны на побережье Балтийского моря и барханы в пустынях Средней Азии.

9. Аллювиальные отложения. Отложения постоянных водных потоков – рек различной величины, ручьев. Воды реки или ручья всегда несут в себе взвесь частиц различного размера – от тонких пылеватых до более грубых песчаных. Отложение реками аллювия приводит к формированию поймы. В притеррасной пойме, где скорость потока незначительна, откладываются илистые и глинистые частицы. В прирусловой пойме, как правило, откладывается песок, что приводит к формированию пляжей и прирусловых валов. В центральной пойме наблюдаются смешанные по механическому составу отложения, часто слоистые.

10. Элювий и делювий.Этот вид материнской породы наблюдается на склонах мезорельефа. Он образуется из-за поверхностного стока атмосферных осадков. Тонкие струйки воды, текущие вниз по склону по почвенным порам, увлекают с собой тонкие частицы, которые в конечном итоге отлагаются в основании склона, а более грубые – песчаные – остаются наверху. В результате на склонах накапливается довольно мощный слой осадков, имеющих суглинистый состав, а сам склон при этом выполаживается. Отлагающиеся в нижней части склона осадки называются делювием, а опесчаненная порода в верхней части склона – элювием.

11. Торф. Материнская порода органогенного происхождения. На старых верховых болотах, где слой торфа может достигать нескольких метров, он представляет собой субстрат для поселения фитоценозов, следовательно, является материнской породой.

Рис. 6. Схема строения долины равнинной реки:
1 – русловый аллювий; 2 – пойменный аллювий; 3 – старичный аллювий; 4 – склоновые отложения; 5 – русло реки; 6 – пойма реки; 7 – зарастающая старица; 8 – надпойменная терраса; 9 – береговые валы

Время. На свойства почвы оказывает влияние и возраст материнской породы. Так, флювиогляциальные пески на территории южной тайги менее богаты минеральными элементами, чем такие же пески в северной тайге на северо-западе России. Это связано с тем, что песчаные отложения северных районов более молодые, чем южных. Первые сформировались при таянии последнего ледника примерно 10 000 лет назад, а вторые – гораздо раньше, при таянии ледников, существовавших в предыдущие стадии оледенения. Поэтому песчаные почвы на юге таежной зоны подвергались химическому выветриванию (оподзоливанию и т.д.) более длительное время, чем на севере.

7. Роль микроорганизмов в почвообразовании.

От характера растительности, поселяющейся в определенном месте, напрямую зависит характер формирующейся здесь почвы, и наоборот. Растительность воздействует на почвы как прямо, так и опосредованно. Прямое влияние заключается в отложении на поверхности почвы опада, который, разлагаясь, обуславливает ее физико-химические свойства. Так, хвойные породы дают более кислый опад, чем лиственные, что способствует развитию подзолистого процесса под хвойными лесами. Опад широколиственных пород обладает слабокислой и нейтральной реакцией и содержит много кальция, являющегося одним из главных элементов в формировании свойств почв, благоприятных в лесорастительном отношении. Моховая растительность, отлагая слои торфа, часто подтягивает кверху уровень грунтовых вод, ухудшая лесорастительные условия.

Создаваемая таким образом среда определяет характер местообитания для почвенной микро- и мезофауны, представители которой также влияют на процесс почвообразования, разрыхляя, перемешивая разнородные участки почвы, разлагая органику. Таким образом, косвенное влияние растительности на почвы заключается в создании среды для поселения фауны редуцентов.

Колоссальная роль в почвообразовании – низшие бактерии (Б). Б. спосбны усваивать из атмосферы O2, N2, H2, C2.

Азот фиксаторы – бактерии, способные усваивать атмосферный азот. Нитрификаторы - бактерии усваивающие азот из аммиачных соединений. Способны окислять аммиачный азот. 2 NH3 + 3O2 →2HNO2 + 158 кал.

Нитрификаторы (nitrasamonas) недоступный аммиачный азот переводят в аммиачную кислоту. HNO2 ↔ H+ + NO2-

Растения усваивают питательные элементы в ионной форме. Нитрификаторы способны окислять дальше HNO2 до азотной кислоты.

HNO2 + O2 → HNO3

 

H+ NO3-

Амонификаторы – усваивают азот из белковых соединений и переводят его в доступную форму. Среди группы бактерий азот фиксаторов существует род Clostridium azotobacter – паразитируют на корнях бобовых растений и усваивают атмосферный азот.

Колоссальная роль бактерий в минерализации растительного опада травянистых сообществ. Бактерии - гумусообразующие, за счет бактерий в гумусе – гумидные кислоты.

Грибная микрофлора типична для лесных цинозов. Её значение: -минерализация растительного опада, -образование гумуса. В лесных сообществах минерализация происходит благодаря микрофлоре. Они способствуют переходу пород в доступную форму. Принимают участие в образовании гумуса. В составе гумуса в лесных ценозах входит фульвокислота, в травянистых гуминовая.

Водоросли. Сине-зеленые водоросли усваивают атмосферный азот. Почвы обогащаются органическими веществом. Лишайник - симбиоз гриба и водоросли: - способствуют обогащению субстрата органическим веществом; - разлагают растительные остатки; - участие в процессах выветривания

Высшие растения играют колоссальную роль в почвообразовании. Биологический круговорот. Растения усваивают питательные элементы на ионом уровне, усваивают питательные элементы из водных растворов.

 

Биологический круговорот основных типов зональных биоцинозов.

Тип растительного покрова Биомасса Прирост Ц/га Опад Ц/га Подстилка Ц/га Отнош. Подстил. К опаду.
  Ц/га Надз. Часть в % Подзем. В%        
Тундра 50(159) 10(38) 10(37) 35(280) 3.5
Ельники (южно-таежные) 3300 (2700) 85(155) 55(120) (1300) 6.3  
Дубравы (5800) 90(330) 65(255) (800) 2.3
Степи луговые (1180) (682) (682) (800) 0.9
Саванны 667(727) 120(-) 115(-) 13(16) 0.1
Влажные тропические леса (11000) (2000) (1500) 20(178) 0.08

(-) количество зольных питательных элементов.

 

В лесных цензах преобладает надземная биомасса (80%). Корневая масса преобладает в травянистых растениях (68%). В лесных цинозах земного шара подавляющая часть питательных элементов оказывается законсервированной в стволах и ветвях деревьев. Они накапливаются в течение всей их жизни. В травянистых сообществах биологический круговорот гораздо интенсивнее. Здесь формируются наиболее плодородные почвы Земного шара. Корни древесных - многолетние. В травянистых сообществах есть растения однолетние и многолетние (часть корневой системы отмирает.) В лесных цинозах гумус резко убывает с глубиной, в травянистых сообществах – плавно.

 

Химический состав золы некоторых химических элементов

Группы растений   Общая зольность Содержание в золе в %
K Ca Mg P S
Бактерии 7.3 14.7 6.0 4.8 1.0 1.2
Водоросли 25.3 5.0 23.1 1.7 1.5 8.9
Грибы. 7.2 28.4 3.2 2.4 16.5 2.3
Лишайники 2.6 9.3 11.0 2.4 2.3 2.9
Хвойные породы 3.8 15.4 26.4 4.5 6.2 6.2
Злаки 6.6 23.0 4.4 1.9 2.1 2.4
бобовые 7.9 27.0 3.4 4.7 1.7

Типы водного режима.

1. Промывной тип водного режима (Тайга). Атмосферные осадки просачиваются через толщу грунта или почвы на некоторую глубину и достигают 1 водоупорного горизонта.

2. Периодически промывной тип водного режима.

3. Непромывной. К< 1. просачивается на несколько десятков см.

4. В этих же аридных районах формируется также выпотный тип водного режима, где K > 1. Наблюдается в отрицательных формах рельефа. Грунтовые воды (хлориды) поднимаются за счёт капиллярного поднятия. Здесь формируются засолённые почвы – солончаки, солонцы, солоди.

солончаки соленость

солонцы

солоди

 

5.Застойный тип водного режима. Избыточное увлажнение. Тяжелый механический состав грунтов.

Оглеение. Fe2O3 – окись →FeO – закись.

Тундро-глеевые почвы. Заболачивание

6. Мерзлотный тип водного режима.

При таком движении воды формируются почвы, у которых очень плохо выражены почвенные горизонты. Т.к. Летом вода оттаивает и опускается, а на контакте с мерзлотой замерзает.

Зимой когда вода замерзает, она начинает подниматься вверх. Из-за этого движения грунт перемешивается и получаются криозёмы.

 

Факторы:

Прямое воздействие: антропогеновое (антропоземы или агрозёмы). Человек перекапывает землю, вносит в неё удобрение (минеральное) → почва начинает отличаться от той, что была раньше – появляется агрозём.

(Ветровая эрозия - дефляция).

Косвенное: пестициды, ДДТ (дуст), заводы, ЦБК, машины.

 

10. Гумус, его образования, состав и свойства.

Надпочвенный опад и внутрипочвенный опад.

Опад состоит из различных органических соединений: 1. Углеводы (в составе углеводов преобладает целлюлоза и гемицеллюлоза); 2. белковые вещества; 3. лигнин; 4. липиды; 5. Дубильные вещества.

C6H10O5 целлюлоза

C20H30 Смолы

В белковых появляется N2.

Подвергаются воздействию микроорганизмов и с этим опадом происходят сложные биохимические превращения. В горизонтах Ao, Aov, A1 3 процесса:

1. Тление - в результате этого процесса органические вещества с опадом превращаются в полностью окисленные вещества (H2 CO3, H2O), соли(Ca2 SO4, K2CO3 ) и окислы (Al2O3, Mn2O3 ).

2. Гниение – процесс анаэробный в результате гниения образуются вещества: CH4 , H2S, H2, NH3, PH3.

3. Брожение– образование сложных органических соединений (спирты, альдегиды, органические кислоты).

Минерализация вызывается микроорганизмами.

C, H, O CO2, H2O

Минерализация

Углеводы переходят в моносахариды (происходит в результате гидролиза), затем брожение (спирты) → подвергаются дальнейшему брожению → уксусная кислота → распадается до углекислоты → CO2↑ и H2O.

Белковые соединения переходят в пептоны, затем в пептиды, затем в аминокислоты, далее в фенольные соединения → распад до H2O и CO2

В процессе минерализации из недоступной в доступную переходят K,P, S, N.

Наряду с минерализацией в подстилочных горизонтах ( Ao, Aov, Ad, A1) происходит сложный геохимический процесс – гумификация (образуется гумус).

Растительные остатки. I стадия moor

лигнины

Углеводы белковые

вещества

 


фенольные амино- фенольные II стадия moder

соединения кислоты соединения

 

 


полимеризация III стадия mull

конденсация

 

I стадия – растительные остатки еще сохраняют свое анатомическое строение, наиболее прочные растительные ткани сохраняются, но такие как паренхима – разлагаются. В результате разложения образуются аминокислоты и фенольные соединения. Происходит в подстилочных горизонтах: Ao, Aov - верхняя часть. Растительные остатки приобретают бурый цвет.

II стадия moder. Фенольные соединения и аминокислоты подвергаются конденсации, т. е. они объединяются. На этой стадии растительные остатки полностью утрачивают свое анатомическое строение. Конденсация в средней части (Ao’’) – слои ферментации. Преобладает черная окраска.

III стадия mull – гумусовая. Осуществляется в слое гумификации Ao’’’ . образование гумуса.

Органическое вещество почвы(100%) – сумма 2-х слагаемых.

1.Органические вещества индивидуального природы (протеины, углеводороды, аминокислоты, сахара, органические кислоты, полифенольные соединения)- 10-15%.

2. Группа специфических органических веществ почвы (гумус) – 90-85%.

Гумус- это система органоминеральных азотсодержащих соединений циклического строения и кислотной природы.

В составе гумуса органоминеральные и азотсодержащие соединения: C, O, H, + N+ S , Fe, Zn, P и т. д.

Циклического строения.

Кислотной природы – способность гумуса вести, как кислоты. Гумус может реагировать с металлами, входящими в состав почвы.

Гумус = Фульвокислоты + гуминовые кислоты + гумины.

Фульвоксилоты.Образуются преимущественно в составе гумуса в составе лесных почв. Фульвокислоты – это сильные кислоты – легко взаимодействуют с металлами, входящими в состав минералов твердой фазы почвы, при взаимодействии с металлами образуются соли. Фульвокислоты + Fe →фульваты.

Фульваты щелочноземельных элементов (Na, K, Ca) при взаимодействии образуются фульваты, которые растворяются в воде. Легко вымываются из почвенной толщи. При взаимодействии фульвокислот с полуторными оксидами (Te, Al, Mn) – образуются фульваты, которые растворимы лишь в кислой среде, а при снижении кислотности выпадают в осадок в горизонте B. Фульвокислоты хорошо растворимы в воде и хорошо перемещаются в почве.

Гуминовые кислоты.В почве травянистых сообществ. В отличии от фульвокислот гуминовые кислоты нерастворимы в воде. Они неподвижны, слабые кислоты – плохо взаимодействуют с металлами, входящими в состав твердой фазы почвы. При взаимодействии с металлами образуются гуматы. Гуматы Ca, Mg – нерастворимы в воде, гуматы K, Na - растворимы- наблюдается при переувлажнении почв – переходят в состояние золя.

Различие фульво- и гуминовых кислот:

1. Длина молекулы.

2. Периферические радикалы свойства кислот (активность).

3. разное количество атомов (C, N)/

Гумус является важнейшим компонентов почвы, который определяет многие свойства почв.

1. Содержание гумуса выражают в %. Колеблется от долей %- от 0.01 до 16%

В верхних слоях почвы (A1,Ad).

2. запасы гумуса в тоннах на Га. Содержание гумуса во всех слоях почвы.

1 га = 100*100 = 10000 м 2.

V = 10000 * 0.2 = 2000 м 3 .

Средний удельный вес почвы 1.5 т/ м 3

Вес почв = 2000 м 3 * 1.5 т/ м 3 = 3000 т

3000 т = 100%

150 т = 5%.

Может быть 700 т/га.

Содержание гумуса с глубиной меняется: лесные цинозы – резко убывает с глубиной, травянистые сообщества – плавно убывает с глубиной.

Гумус влияет на:

1. Наличие азота в почвах (60% азота из гумуса, которые получают растения).

2. Содержание других зольных элементов (S, P, K).

3. Емкость поглощения – прямопропорционально (Чем ↑ гумуса, тем ↑ Ёмкость поглощения).

4. Кислотность почв (РН). Лесные почвы обладают кислой реакцией по сравнению с травянистыми сообществами.

5. Структура почв: чем больше гумуса, тем лучше структура, так как гумус является “цементом”.

6. Направленность процессов почвообразования, где гуминовые кислоты – там аккумулятивный тип. Где фульвокислоты – там элювиальный.

7. Тепловые свойства почв. Чем ↑ гумуса, тем почва лучше, быстрее и глубхе прогревается.

8. Аккумулятор солнечной энергии.

9. Гумус способен связывать пестициды.

 

Механическое.

Физико-химическое.

Биологическое.

Уравновешенность

Буферность.

Осмотические давление.

Кислотность.

1. Уравновешенность – это способность почв раствора поддерживать определенную свойственную ему концентрацию или минерализацию. При ↓ содержания элемента его место занимает другой.

2. Буферность – способность почвенного раствора поддерживать определенную величину кислотности соответствующую ему.

3. Осмотическое давление – это давление, которое обусловлено каким-то веществом, находящимся в почвенном покрове. Оно может быть в почвенном растворе и в растительных клетках.

4. Кислотность – свойство почвы, обусловленное наличием водородных ионов в почвенном растворе и обменных ионов водорода и алюминия в почвенном поглощающем комплексе.

 

 

Кислотность почв.

(ППК) H+ K+ + CaCO3↔(ППК) Ca+ + H2CO3 → CO2

H2O

H2O↔ H+ + OH-

PH= 6

При известковании → углекислота, которая распадается на H+ и OH-

PH = 4

4. Оптимальный вводно-воздушный режим. Оптимальное сочетании H2O и O2

в тех регионах, где коэффициент увлажнения близок к 1. Осушительные работы производятся при избытке воды и при недостатке орошения.

5. Структура почв. Способность почв образовывать отдельные комки, глыбы.

Структура состоит из 3х фракций: Песчаная, пылеватая и илистая фракции – структурные отдельности или агрегаты. Структура (комковатость) препятствует эрозии и ветровой дефляции и плотностной (водной) эрозии. Почвенная структура способствует накоплению или удержанию влаги в почвах. Если почва комковата, вода легко просачивается, и трудно испаряется. В бесструктурной почве вода глубоко не просачивается и легко испаряется. Высокая капиллярность.

6. Использование гумуса, травопольных культур (клевер).Отсутствие токсичных соединений в почвах.

NaHCO3

Na2CO3

Fe(II) (закисное железо).

Таксономия почв.

Таксономия (от греч. taxis — расположение, строй, порядок и nomos — закон), теория классификации и систематизации сложноорганизованных областей действительности, имеющих обычно иерархическое строение. Термин (предложен в 1813 швейцарским ботаником О. Декандолем), длительное время употреблялся как синоним систематики.

Глазовская: “Таксоны объединяются в 37 семейств. Эти семейства объединяются в генерации – их 27, а они в ассоциац






Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...





© cyberpedia.su 2017 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.051 с.