Гидравлический привод сцепления — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Гидравлический привод сцепления

2021-11-25 16
Гидравлический привод сцепления 0.00 из 5.00 0 оценок
Заказать работу

Гидравлический привод сцепления по конструкции аналогичен гидравлическому приводу тормозной системы. В нем используется свойство несжимаемости жидкости. В качестве рабочей жидкости применяется тормозная жидкость.

Гидравлический привод сцепления имеет следующее устройство:

  • педаль сцепления;
  • главный цилиндр привода сцепления;
  • бачек рабочей жидкости;
  • рабочий цилиндр привода сцепления;
  • соединительные трубопроводы.

Схема гидравлического привода сцепления

Конструктивно главный и рабочий цилиндры состоят из поршня с толкателем, размещенных в корпусе. При нажатии на педаль сцепления толкатель перемещает поршень главного цилиндра, происходит отсечка рабочей жидкости от бачка. При дальнейшем движении поршня рабочая жидкость по трубопроводу поступает в рабочий цилиндр. Под воздействием жидкости происходит движение поршня с толкателем. Толкатель воздействует на вилку сцепления и обеспечивает выключение сцепления.

Для удаления воздуха из системы гидропривода сцепления (прокачки системы) на главном и рабочем цилиндрах установлены специальные клапаны (штуцеры).

Для облегчения управления на некоторых моделях автомобилей используются пневматический или вакуумный усилитель привода сцепления.

Большинство современных роботизированных коробок передач оборудованы двойным сцеплением. Данное устройство, помимо традиционных функций сцепления, обеспечивает предварительный выбор очередной передачи при включенной другой передаче за счет поочередной работы двух фрикционных муфт. При этом крутящий момент от двигателя на ведущие колеса передается непрерывно.

В роботизированной коробке передач с двойным сцеплением для четных и нечетных передач используется отдельное сцепление. По своей сути это две отдельные коробки передач, находящиеся в одном корпусе и работающие как единое целое.

Применение двойного сцепления в конструкции коробок передач началось с 1980 года благодаря разработкам Porsche и Audi для своих спортивных автомобилей. В настоящее время двойное сцепление используется в следующих конструкциях коробок передач: DSG от Volkswagen;

  • M DCT от BMW;
  • Powershift от Ford;
  • Speedshift от Mercedes-Benz;
  • S-Tronic от Audi;
  • Twin Clutch SST от Mitsubishi;
  • 7DT от Porsche.

Ввиду высокой технической сложности производителей двойного сцепления не так много, в том числе:

  • BorgWarner («мокрое» сцепление для Volkswagen);
  • Getrag (коробки передач с двойным сцеплением для BMW, Chrysler, Dodge, Ferrari, Ford, Mercedes-Benz, Mitsubishi, Renault, Volvo);
  • Luk («сухое» сцепление для Volkswagen);
  • Ricardo (коробка передач для Bugatti Veyron);
  • ZF (коробка передач для Porsche).

Ряд автомобильных компаний в конструкции своих коробок используют компоненты разных производителей, например, в M DCT от BMW используется коробка передач от Getrag, а двойное сцепление от BorgWarner.

Различают два типа двойного сцепления:

  • «сухое» (фрикционные диски в воздухе);
  • «мокрое» (фрикционные диски в масле).

«Мокрое» сцепление имеет лучшее охлаждение, поэтому может применяться для передачи большего крутящего момента (до 350 нм и более). Например, «мокрое» сцепление в коробке передач Bugatti Veyron обеспечивает передачу крутящего момента 1250 нм. Предел «сухого» сцепления – 250 нм. Вместе с тем, «сухое» сцепление более эффективно в эксплуатации, т.к. в нем отсутствуют потери мощности двигателя на привод масляного насоса.

Схема двойного сцепления

Конструктивно двойное сцепление объединяет два пакета фрикционных дисков, размещенных в корпусе. Часть дисков обоих пакетов жестко соединено с корпусом сцепления. Корпус, в свою очередь, через ступицы соединен с двигателем. Другая часть дисков закреплена на своих ступицах, которые посажены на первичные валы соответствующих рядов передач.

Нормальное положение сцепления – разомкнутое. Замыкание сцепления (сжатие пакетов дисков) производится с помощью гидроцилиндров под управлением электрогидравлического модуля. В исходное положение диски возвращаются с помощью пружин.

В зависимости от конструкции сцепления пакеты фрикционных дисков могут иметь:

  • концентрическое расположение (муфты расположены в одной плоскости, перпендикулярно первичному валу);
  • параллельное расположение (муфты расположены друг за другом параллельно).

Концентрическое расположение муфт более компактное, поэтому применяется в трансмиссии переднеприводных автомобилей (поперечное расположение двигателя). При концентрическом расположении внешняя муфта обслуживает нечетные передачи, внутренняя – четные передачи. В силу своей конструкции (большая площадь дисков) внешняя муфта рассчитана на передачу большего крутящего момента. Двойное сцепление с параллельным расположением дисков применяется, в основном, на заднеприводных автомобилях.

Эксплуатация сцепления сопровождается износом накладок ведомого диска, вследствие чего нажимной диск смещается в направлении маховика, а «лепестки» диафрагменной пружины – в противоположную сторону. Все это приводит к увеличению выжимного усилия, усилия на педали сцепления и изменению ее положения.

В 1995 году компания Luk предложила систему автоматической компенсации износа накладок ведомого диска, которая получила название саморегулирующееся сцепление (Self-Adjusting Clutch, SAC). В настоящее время разработаны и активно используются различные конструкции саморегулирующегося сцепления:

  • сцепление SAC от Luk;
  • сцепление XTend от ZF Sachs;
  • сцепление SAT от Valeo.

 

Все конструкции обладают в основном схожими функциями. Помимо компенсации износа, саморегулирующееся сцепление обеспечивает снижение и постоянство выжимного усилия. Все это значительно повышает срок службы сцепления и позволяет использовать его в трансмиссиях различных автомобилей, в т.ч. с мощными двигателями. Саморегулирующееся сцепление используется в ряде конструкций роботизированной коробкой передач, например, в коробке передач Easytronic.

 

Схема саморегулирующегося сцепления SAC

Саморегулирующееся сцепление SAC включает диафрагменную пружину, которая опирается на сенсорную диафрагменную пружину. Сенсорная пружина по окружности имеет множество коротких «лепестков». Над диафрагменной пружиной располагается регулировочное кольцо, которое имеет двенадцать клиньев и закреплено в корпусе с помощью трех пружин.

В отличие от диафрагменной пружины сенсорная пружина имеет постоянную силовую характеристику, величина которой соответствует усилию срабатывания нового сцепления (с целыми накладками ведомого диска). По мере износа накладок, нажимное усилие на сенсорную диафрагменную пружину увеличивается, ее «лепестки» прогибаются. Регулировочное кольцо под действием пружин проворачивается и за счет клиньев компенсирует возникающий зазор.

 

Схема саморегулирующегося сцепления XTend

Механизм компенсации износа саморегулирующегося сцепления XTend имеет иную конструкцию. Он расположен между диафрагменной пружиной и нажимным диском и включает два установочных кольца, пружинную защелку и ограничитель на корпусе сцепления. Кольца установлены друг на друга и соединены с корпусом пружиной натяжения. По окружности колец выполнено несколько клиновидных ползунов, которые закреплены пружиной растяжения.

Ограничитель на корпусе сцепления фиксирует износ накладок ведомого диска. Пружинная защелка перемещается над кольцами на величину износа до ограничителя. Верхнее установочное кольцо за счет пружины растяжения перемещается по клиновидному ползуну. Пружинная защелка фиксируется в приподнятом положении. При выключении сцепления нижнее установочное кольцо за счет пружины натяжения проворачивается и фиксирует верхнее кольцо. Таким образом, компенсируется величина износа, а диафрагменная пружина остается в неизменном положении.

Саморегулирующееся сцепление SAT (Self-Adjusting Technology) обеспечивает автоматическую компенсацию износа накладок ведомого диска с помощью уникального храпового механизма. Между диафрагменной пружиной и нажимным диском располагается опорное кольцо конической формы. При возникновении износа кольцо проворачивается по конической поверхности. На кольце закреплен зубчатый сектор, который вращает червяк. На одной оси с червяком расположено храповое колесо. Фиксацию колеса осуществляет собачка, за счет чего фиксируется положение опорного кольца и соответственно компенсируется износ накладок.

 

 


Поделиться с друзьями:

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.014 с.