Известно два биомеханизма, которые изменяют объем грудной клетки: — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Известно два биомеханизма, которые изменяют объем грудной клетки:

2022-08-20 21
Известно два биомеханизма, которые изменяют объем грудной клетки: 0.00 из 5.00 0 оценок
Заказать работу

поднятие и опускание ребер и движения купола диафрагмы; оба биомеханизма осуществляются дыхательными мышцами.

Дыха­тельные мышцы подразделяют на инспираторные и экспираторные.

Инспираторными мышцами являются диафрагма, наружные межреберные и межхрящевые мышцы. При спокойном дыхании объем грудной клетки изменяется в основном за счет сокращения диафрагмы и перемещения ее купола. При глубоком форсированном дыхании в инспирации участвуют дополнительные, или вспомога­тельные, мышцы вдоха: трапециевидные, передние лестничные и грудино-ключично-сосцевидные мышцы. Лестничные мышцы под­нимают два верхних ребра и активны при спокойном дыхании. Грудино-ключично-сосцевидные мышцы поднимают грудину и уве­личивают сагиттальный диаметр грудной клетки. Они включаются в дыхание при легочной вентиляции свыше 50 л*мин-1 или при дыхательной недостаточности.

Экспираторными мышцами являются внутренние межреберные и мышцы брюшной стенки, или мышцы живота. Последние нередко относят к главным экспираторным мышцам. У нетренированного человека они участвуют в дыхании при вентиляции легких свыше 40 л*мин-1.

Движения ребер. Каждое ребро способно вращаться вокруг оси, проходящей через две точки подвижного соединения с телом я поперечным отростком соответствующего позвонка. Во время вдоха верхние отделы грудной клетки расширяются преимущественно в переднезаднем направлении, так как ось вращения верхних ребер расположена практически поперечно относительно грудной клетки (рис. 8.1, А). Нижние отделы грудной клетки больше расширяются преимущественно в боковых направлениях, поскольку оси нижних ребер занимают более сагиттальное положение. Сокращаясь, на­ружные межреберные и межхрящевые мышцы в фазу инспирации поднимают ребра, напротив, в фазу выдоха ребра опускаются бла­годаря активности внутренних межреберных мышц.

Движения диафрагмы. Диафрагма имеет форму купола, обра­щенного в сторону грудной полости. Во время спокойного вдоха купол диафрагмы опускается на 1,5—2,0 см (рис. 8.2), а перифе­рическая мышечная часть несколько отходит от внутренней повер­хности грудной клетки, поднимая при этом в боковых направле­ниях нижние три ребра. Во время глубокого дыхания купол диаф­рагмы может смещаться до 10 см. При вертикальном смещении диафрагмы изменение дыхательного объема составляет в среднем 350 мл*см-1. Если диафрагма парализована, то во время вдоха ее купол смещается вверх, возникает так называемое парадоксальное движение диафрагмы

26. Роль изменений альвеолярного, плеврального и транспульмонального давлений в осуществлении вдоха и выдоха.

Альвеолярное давление — давление внутри легочных альвеол.

Во время задержки дыхания при открытых верхних дыхательных путях давление во всех отделах легких равно атмосферному.

Перенос О2 и СО2 между внешней средой и альвеолами легких происходит только при появлении разницы давлений между этими воздушными средами. Колебания альвеолярного (внутрилегочного) давления возникают при изменении объема грудной клетки во время вдоха и выдоха.

Изменение альвеолярного давления на вдохе и выдохе вызывает движение воздуха из внешней среды в альвеолы и обратно. На вдохе возрастает объем легких. Согласно закону Бойля—Мариотта, альвеолярное давление в них уменьшается и в результате этого в легкие входит воздух из внешней среды. Напротив, на выдохе уменьшается объем легких, альвеолярное давление увеличивается, в результате чего альвеолярный воздух выходит во внешнюю среду.

Внутриплевральное давление — давление в герметично замкнутой плевральной полости между висцеральными и париетальными листками плевры. В норме это давление является отрицательным относительно атмосферного. Внутриплевральное давление возникает и поддерживается в результате взаимодействия грудной клетки с тканью легких за счет их эластической тяги. При этом эластическая тяга легких развивает усилие, которое всегда стре-мится уменьшить объем грудной клетки. В формировании конечного значения внутриплеврального давления участвуют также активные силы, развиваемые дыхательными мышцами во время дыхательных движений. Наконец, на поддержание внутриплеврального давления влияют процессы фильтрации и всасывания внутриплевральной жидкости висцеральной и париетальной плеврами. Внутриплевральное давление может быть измерено манометром, соединенным с плевральной полостью полой иглой.

При спокойном дыхании внутриплевральное давление ниже атмосферного в инспирацию на 6—8 см вод. ст., а в экспирацию — на 4—5 см вод. ст.

Разница между альвеолярным и внутриплевральным давлениями называется транспульмональным давлением. В области контакта легкого с диафрагмой транспульмональное давление называется трансдиафрагмальным.

Величина и соотношение с внешним атмосферным давлением транспульмонального давления, в конечном счете, является основным фактором, вызывающим движение воздуха в воздухоносных путях легких.

Изменения альвеолярного давления взаимосвязаны с колебаниями внутриплеврального давления.

Альвеолярное давление выше внутриплеврального и относительно барометрического давления является положительным на выдохе и отрицательным на вдохе. Внутриплевральное давление всегда ниже альвеолярного и всегда отрицательное в инспирацию. В экспирацию внутриплевральное давление отрицательное, положительное или равно нулю в зависимости от форсированности выдоха.

На движение воздуха из внешней среды к альвеолам и обратно влияет градиент давления, возникающий на вдохе и выдохе между альвеолярным и атмосферным давлением.

Сообщение плевральной полости с внешней средой в результате нарушения герметичности грудной клетки называется пневмотораксом. При пневмотораксе выравниваются внутриплевральное и атмосферное давления, что вызывает спадение легкого и делает невозможной его вентиляцию при дыхательных движениях грудной клетки и диафрагмы.

Усилия, которые развивают дыхательные мышцы, создают следующие количественные параметры внешнего дыхания: объем (V), легочную вентиляцию (VE) и давление (Р).

Эти величины в свою очередь позволяют рассчитывать работу дыхания (W=P*ΔV),

растяжимость легких, или комплианс (С = =ΔV/P),

вязкое сопротивление, или резистанс (R=ΔP/V) дыхательных путей, ткани легких и грудной клетки.

Сопротивление легких включает в себя сопротивление ткани легких и дыхательных путей. В свою очередь сопротивление дыхательных путей подразделяют на сопротивление верхних (полость рта, носовые ходы, глотка), нижних (трахея, главные бронхи) и мелких (меньше 2 мм в диаметре) дыхательных путей. При этом сопротивление дыхательных путей обратно пропорционально диаметру их просвета. Следовательно, мелкие дыхательные пути создают наибольшее сопротивление потоку воздуха в легких. Кроме того, на этот показатель влияют вязкость и плотность газа.

27. Эластические свойства легких и грудной клетки. Растяжимость легких. Сопротивление в дыхательной системе.

Наличие отрицательного межплеврального давления объясняется эластической тягой легких. Это сила, с которой легкие стремятся сжаться к корням, противодействуя атмосферному давлению. Она обусловлена упругостью легочной ткани, которая содержит много эластических волокон. Кроме того, эластическую тягу увеличивает поверхностное натяжение альвеол, которые изнутри покрыты пленкой сурфактанта. Это липопротеид, вырабатываемый митохондриями альвеолярного эпителия. Благодаря особому строению его молекулы, на вдохе он повышает поверхностное натяжение альвеол, а на выдохе, когда их размеры уменьшаются, наоборот понижает. Это препятствует спадению альвеол, т.е. возникновению ателектаза. При генетической патологии, у некоторых новорожденных нарушается выработка сурфактанта, возникает ателектаз и ребенок гибнет. В старости, а также при некоторых хронических заболеваниях легких, количество эластических волокон возрастает. Это явление называется пневмофиброзом. Дыхательные экскурсии затрудняются.

При эмфиземе эластические волокна наоборот разрушаются и эластическая тяга легких снижается. Альвеолы раздуваются, величина экскурсий легких также уменьшается.

При попадании воздуха в плевральную полость возникает пневмоторакс. Различают его следующие виды:

1. по механизму возникновения: патологический (рак легких, абсцесс, проникающее ранение грудной клетки) и искусственный (лечение туберкулеза);

2. в зависимости от того, какой листок плевры поврежден выделяют наружный и внутренний пневмоторакс;

3. по степени сообщения с атмосферой различают открытый пневмоторакс, когда плевральная полость постоянно сообщается с атмосферой. Закрытый, если произошло однократное попадание воздуха. Клапанный, когда на вдохе воздух из атмосферы входит в плевральную щель, а на выдохе отверстие закрывается;

4. в зависимости от стороны поражения - односторонний (правосторонний, левосторонний), двусторонний.

Пневмоторакс является опасным для жизни осложнением. В результате него легкое спадается и выключается из дыхания. Особенно опасен клапанный пневмоторакс.

Упругостью обладают не только легкие, но и грудная стенка, которая состоит из костей грудной клетки, межреберных мышц, подлежащих мягких тканей и париетальной плевры. При остаточном объеме эластическая отдача изолированной грудной стенки направлена наружу. По мере того как грудной объем расширяется, отдача стенки, направленная наружу, снижается и падает до нуля при объеме грудной полости около 60% жизненной емкости легких (рис. 2--12). При дальнейшем расширении грудной клетки до уровня общей емкости легких отдача ее стенки направляется внутрь. Нормальная растяжимость грудной стенки равна 0,2 л/см вод.ст. Выраженное ожирение, обширный плевральный фиброз, кифосколиоз могут приводить к изменению растяжимости грудной клетки.

Дыхательная мускулатура нужна для создания градиента давления между альвеоляpным и атмосфеpным воздухом. Это создается за счет изменения объема гpудной полости. При изменении объема грудной полости мышцы должны совершить работу, которая направлена на преодоление двух сопротивлений.


Поделиться с друзьями:

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.