Основные сведения о сварочных выпрямителях — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Основные сведения о сварочных выпрямителях

2022-05-08 26
Основные сведения о сварочных выпрямителях 0.00 из 5.00 0 оценок
Заказать работу

Урок №22

Урок №23-24

А – с независимым возбуждением и последовательной размагничивающей обмоткой; б – с самовозбуждением и последовательной размагничивающей обмоткой

 Рис. 8 Внешние характеристики генераторов с последовательной размагничивающей обмоткой

 

Сварочный ток в генераторах этой системы регулируется реостатом R и секционированием последовательной обмотки (см. рис. 7). По такой схеме работают генераторы ГСО-300, ГСО-500. Генераторы по второй схеме отличаются от рассмотренных выше тем, что намагничивающая обмотка питается постоянным током от части обмотки якоря самого генератора. С этой целью на коллекторе между главными щетками А и В расположена дополнительная щетка С. При работе генератора напряжение между щетками А и С остается постоянным, что позволяет подключить к ним параллельно якорю намагничивающую обмотку возбуждения, создающую постоянный намагничивающий поток ФН. Падающая внешняя характеристика создается действием последовательной размагничивающей обмотки, магнитный поток которой (ФР) направлен против магнитного потока ФН. По такой схеме работают сварочные генераторы ГСО-330-М, ГСО-300-5 и др. Вращение якоря генератора может производиться с помощью электрического двигателя или двигателя внутреннего сгорания. Установку, состоящую из сварочного генератора и приводного трехфазного асинхронного электродвигателя, называют сварочным преобразователем, это, например, преобразователи ПСГ-5004, ПД-502 и др. Установку, состоящую из сварочного генератора и приводного двигателя внутреннего сгорания, называют сварочным агрегатом. Агрегаты используют в основном для ручной сварки и резки в монтажных и полевых условиях, где отсутствуют электрические сети. Если требуется сварочный ток больше, который дает источник питания, можно применять параллельное соединение двух источников (и более) (сварочных генераторов, трансформаторов, реже сварочных выпрямителей). При включении источников на параллельную работу необходимо соблюдать следующие условия:

напряжения холостого хода выбираемых источников питания должны быть одинаковыми;

внешние характеристики источников должны быть однотипными (крутопадающие, пологопадающие или жесткие);

сила сварочного тока источников питания дуги должна быть отрегулирована на одно и то же значение;

для контроля напряжения холостого хода при настройке, а также для контроля за распределением силы тока при сварке необходимо установить вольтметры и амперметры, измеряющие напряжения и сварочный ток отдельных источников.

 

Рекомендуется соединять источники питания дуги одного типа или с одинаковыми номинальными данными. В общем случае при подключении все выходные зажимы соединяемых источников питания, имеющие одноименную полярность или одинаковую фазу, соединяют между собой, получая два общих зажима, от которых питается сварочная дуг.

Рис. 3 Блок управления инверторного выпрямителя: ОС по I и U – обратная связь по току и напряжению; ЗПЧ – звено промежуточной частоты

9. Дроссель служит для ограничения скорости нарастания тока короткого замыкания при механизированной сварке в среде защит-108

ных газов и сглаживания пульсаций выходного напряжения. В связи с тем, что пульсации на выходе выпрямителя имеют высокую частоту он изготавливается на основе ферритов. При конструировании тиристорного инвертора главная трудность заключается в необходимости выключения тиристора для прекращения каждого импульса. Как известно, тиристор, установленный в цепи постоянного тока, невозможно выключить снятием сигнала управления (если не считать специальных запираемых тиристоров). Принципиально для его выключения необходимо снизить до нуля анодный ток, а после прекращения его протекания некоторое время поддерживать обратное напряжение для восстановления запирающих свойств. Это возможно, если параллельно или последовательно с тиристором включить конденсатор, с разрядом или зарядом которого прекращается ток в анодной цепи тиристора.

 Поэтому различают параллельный и последовательный тиристорные инверторы. Рис.4

Рис. 4.Схема тиристорных звеньев промежуточной частоты: а) и б) параллельные инверторы, в) и г) последовательные инверторы.

Урок №22

Основные сведения о сварочных выпрямителях

       Сварочные выпрямители представляют собой устройство, предназначенное для преобразования переменного тока в постоянный (выпрямленный). Он состоит из следующих основных узлов: силового трансформатора для понижения напряжения сети до необходимого напряжения холостого хода источника, блока полупроводниковых элементов для выпрямления переменного тока, стабилизирующего дросселя для уменьшения пульсаций выпрямленного тока. Выпрямительный блок представляет собой набор полупроводниковых элементов, включенных по определенной схеме. Особенность полупроводниковых элементов заключается в том, что они проводят ток только в одном направлении, в результате чего сила тока получается постоянной (выпрямленной). Такие элементы обладают вентильным эффектом – пропусканием тока в одном направлении; их называют полупроводниковыми вентелями. Они делятся на неуправляемые – диоды, управляемые – тиристоры. В качестве материала для кремниевого неуправляемого вентиля-В качестве материала для кремниевого неуправляемого вентиля-диода (рис 1, б) применяют тонкую кремниевую пластинку (катод), на одну сторону которой нанесен слой алюминия (анод). При непосредственном контактировании двух полупроводников в месте контакта образуется переходный слой (П), легко пропускающий электрический ток в одном направлении (от анода А к катоду К) и почти не пропускающий его в обратном направлении. Такой кремниевый диск с переходным слоем, впаянный в неразборный герметичный корпус (рис. 1 а), который имеет шпильку на одном конце для ввинчивания в охладитель, а с другого конца – вывод в виде гибкого провода, изолированного от корпуса, и представляет конструкцию диода.

 

 

а)                                                б)                                          в)

 

 

Рис. 1. Устройство и принцип работы диода и тиристора

 

Кремниевый управляемый вентиль-тиристор имеет четыре слоя и три перехода (рис. 1 в). Если к такому элементу приложить внешнее напряжение от анода к катоду, то средний переход П 2 оказывается включенным в обратном направлении и тиристор тока не пропускает (заперт). Его можно отпереть, если подать на его управляющий электрод (УЭ) положительный потенциал (импульс). В этом случае переход П2 открывается и ток идет по тиристору от анода к катоду. Тиристор снова запрется лишь при спаде протекающего по нему тока до нуля. Изменяя по фазе электрический угол открывания тиристора, т.е. время подачи импульса относительно начала синусоиды питающего напряжения, можно регулировать среднее значение выпрямленного тока. Таким образом, тиристор будет выполнять функции не только выпрямителя, но и регулятора сварочного тока. Изменяют время подачи импульса, а следовательно, и силу тока с помощью специального электронного устройства. Конструктивно кремниевый тиристор выполнен, как и кремниевый диод, но имеет еще третий (управляющий) электрод. В промышленности в настоящее время получили распространение кремниевые и селеновые диоды и кремниевые тиристоры. На (рисунке 2) показана схема выпрямления однофазного переменного тока. Она состоит из силового однофазного трансформатора и четырех диодов, включенных по мостовой схеме.

 

а

б

 Рис. 2. Однофазная двухполупериодная  мостовая схема выпрямления: а – схема включения; б – сила тока внешней цепи, выпрямленный ток

При таком варианте получают непрерывный выпрямленный пульсирующий ток с падением его до нуля после каждого полупериода. В сварочных выпрямителях силовой трансформатор, как правило, применяют трехфазный, что обеспечивает равномерную загрузку трехфазной сети, а с другой стороны, позволяет получать меньшие пульсации выпрямленного тока. В этом случае диоды соединяют по трехфазной мостовой схеме двухполупериодного выпрямления (рис. 3), представляющей собой мост из шести плеч. В каждом плече моста установлены вентили. Диоды в плечах каждой фазы соединены последовательно. В трех плечах соединены между собой все катоды, составляющие катодную группу выпрямителя, в остальных трех – все аноды, образующие анодную группу. Такая схема обеспечивает выпрямление обоих полупериодов переменного трехфазного тока во всех трех фазах. Применение трехфазной мостовой схемы позволяет свести пульсации выпрямленного тока до минимума.

 

а

б в

г

Рис. 3. Выпрямление трехфазного переменного тока: а – схема включения; б – трехфазный ток внешней цепи; в, г – выпрямленные токи трех фаз.

Урок №23-24


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.021 с.