Величина — понятие аксиоматическое. — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Величина — понятие аксиоматическое.

2021-02-05 83
Величина — понятие аксиоматическое. 0.00 из 5.00 0 оценок
Заказать работу

К вопросу об изучении величин в начальной школе.

Автор:

Выходные данные: Р.Н.Шикова «начальная школа». 2006-№6

Ссылка: https://n-shkola.ru/storage/archive/1407237212-1332344965.pdf

Основными понятиями начального курса математики являются «число» и «величина». В методико-математической литературе, используемой при подготовке учителей начальных классов, этому уделяется много внимания.

Как показывает практика, у учителя нередко наблюдается неуверенность в использовании термина величина. Грубый методический просчет допускает учитель, когда при решении задачи «Купили 5 кг моркови и 4 кг капусты. Сколько всего килограммов овощей купили?», задавая вопрос: «О каких величинах идет речь в задаче?» — соглашается с ответом ученика, что в задаче речь идет о килограммах. Килограмм — это единица величины. В задаче речь идет о массе купленных овощей.

На уроке при решении задач нередко можно услышать: «Находим величину площади», а т.к. площадь — это величина, то данное выражение равнозначно следующему: «Находим величину величины», что некорректно.

Автор методического пособия для учителей начальных классов на основе анализа программ и учебников различных систем обучения математике в начальной школе отмечает, что при обучении учащихся математике по некоторым системам и учебникам «...интуитивные представления детей о конкретных величинах не только не уточняются, но в определенной мере искажаются: авторы отождествляют объект и величину, характеризующую его, они также не разводят понятия величина, значение величины, числовое значение величины, смешивают физический и математический смысл величины. В результате представления учащихся о величине, полученные из учебников этого направления, могут быть противоречивыми, алогичными и формальными».

При ознакомлении с той или иной величиной «...важно, чтобы у детей сложилось определенное представление о том, что такое величина вообще и как ее измерять. Не менее важно, чтобы представление о величинах связывалось у ученика с предметами и явлениями окружающего мира и, так же как понятие числа, понятие величины приобретало для них практическую значимость».

В начальных классах используется интуитивный подход, в соответствии с которым формируются представления о величинах как о некоторых свойствах предметов или явлений, связанных прежде всего с измерением. Прежде всего, необходимо ознакомить учащихся со свойствами различных предметов и научить учащихся выявлять как качественные, так и количественные свойства: например, сравнить 2 кубика одинакового цвета по размеру и по массе. Сравнивая большой и маленький кубики, ученики приходят к выводу, что один из них больше по размеру, а другой больше, например, по массе. Выполняя такие упражнения, учащиеся начинают понимать, что сравнение нужно проводить по определенному свойству. При измерении тех или иных величин важно, чтобы учащиеся осознавали, что величина — это свойство предметов, по отношению к которому можно проводить сравнение и сложение.

В учебниках математики М.И. Моро и других для начальной школы введен термин величина и предлагается система упражнений, которая дает возможность сформировать у учащихся понятие величина и выработать прочные умения выполнения арифметических операций над величинами. При выполнении этих упражнений школьники усваивают, что величина — это свойство предметов, причем такое свойство, которое позволяет сравнивать и устанавливать пары объектов, обладающих свойством в равной мере, или выяснять, какой из них обладает этим свойством в большей мере.

В учебнике математики Н.Б. Истоминой предлагаются задания, которые помогут осознанному выполнению различных действий над величинами.

При выполнении заданий такого типа учащиеся начинают осознавать, что складывать или сравнивать можно только однородные величины. При изучении каждой последующей темы включается ранее пройденный материал, что благоприятно сказывается на усвоении учащимися знаний, формировании умений и навыков.

Вопрос об использовании термина величина в процессе обучения решению текстовых задач требует особого внимания. Как известно, в любой задаче идет речь не менее чем о двух значениях величины, находящихся в некоторых связях и отношениях. На их основе выбирается действие, посредством которого решается задача. Эти связи и отношения бывают самыми разнообразными и довольно сложными, поэтому не только детям, но иногда и учителям трудно осознать, о каких величинах идет речь в задаче и какие связи и зависимости могут быть между ними. В связи с этим задавать вопрос: «О каких величинах идет речь в задаче?» не всегда целесообразно, так как, возможно, учащиеся еще не знают о существовании той или иной величины.

Поясним сказанное на примере решения задачи: «Сколько лошадей заменит один большегрузный самосвал, если он берет 25 т груза и движется со скоростью 20 км/ч, а лошадь берет 500 кг груза и движется со скоростью 10 км/ч?» (с. 225, № 106).

На вопрос: «О каких величинах идет речь в данной задаче?» учащиеся отвечают, что в задаче речь идет о массе и скорости. Однако что можно найти по этим данным и какая зависимость существует между скоростью и массой перевозимого груза за один рейс, определить учащимся крайне трудно.

Что же можно найти по этим данным? На самом деле в задаче идет речь о работе и мощности. При решении используется формула мощности. Но в начальных классах ознакомление с этими формулами не предусмотрено программой.

Как видим, первая задача относится к задачам на работу, вторая — на движение, а третью можно отнести как к первому, так и ко второму виду, поскольку рабочие при выполнении работы могут двигаться навстречу друг к другу.

Эти задачи отличаются по сюжету (в них включены различные величины), но они имеют одинаковые модели и структуры. Для ответа на вопросы этих задач необходимо установить связи и отношения между величинами, характеризующие процесс, о котором идет речь в каждой из задач. Анализ задач целесообразно начинать с выделения величин в предложенных ситуациях и установления связей и отношений между величинами, входящими в задачи. Построим обобщенную модель задач: запишем кратко условие задачи в виде таблицы.

 

Построенная таблица (модель задач) помогает устанавливать связи и отношения между величинами, входящими в задачу, сравнивать задачи с точки зрения метода решения, а также взаимно-однозначного соответствия между различными системами величин.

Опора на формулы помогает учащимся находить ответ задачи и подготавливает их к решению задач с помощью уравнений в старших классах. Но излишнее увлечение формулами в младших классах приводит к формальному пониманию хода решения. Поэтому во многих методических пособиях рекомендуется использовать формулы в качестве вывода, но не основы решения задач, так как решение по готовым формулам оказывает негативное влияние на развитие словесно-логического мышления, на формирование общего умения решать задачи у младших школьников.

Одним из аспектов явного использования моделирования в обучении является рассмотрение самого процесса моделирования математического объекта, формирования и развития математического понятия как модели. Этот аспект является новым и практически не разработанным в методике обучения математике в начальных классах.

В большинстве случаев изучение величин младшими школьниками начинается с рассмотрения длины, площади и других величин, что создает основу для формирования обобщенного понятия скалярной величины. При этом следует использовать интуитивные представления о величинах как о свойствах реальных предметов. Так, уже в дошкольном возрасте дети могут определить, какой предмет длиннее, а какой короче, какие предметы одинаковы по длине. Однако для того чтобы младшие школьники четко и ярко видели среди других свойств предметов свойство протяженности — длину, полезно рассмотреть с ними специально смоделированные ситуации на сравнение свойств, включая свойство протяженности.

Для этого удобно использовать специально подготовленные комплекты палочек. В комплекте должны быть палочки одинаковые и разные по цвету, характеру обработки поверхности, материалу изготовления, длине, толщине, форме сечения и массе.

На уроке учитель показывает палочки и проводит беседу об их свойствах. Ученики замечают, что каждая палочка окрашена определенным цветом; какие-то палочки блестящие, а какие-то матовые и т.д. Затем учитель предлагает выбрать палочки белого цвета, подчеркивая, что выбранные палочки одинаковы по цвету. Затем учитель обращает внимание детей на то, что, несмотря на то, что палочки одинаковы по цвету, они отличаются друг от друга по каким-либо другим свойствам. Дети находят отличия по длине, материалу и т.д.

Затем учитель показывает две палочки, одинаковые по длине, но разные по цвету, одна из которых блестящая, а другая матовая. Хорошо, если эти палочки будут отличаться и другими свойствами: материалом, формой сечения и т.п. Учитель сначала предлагает детям найти, чем различаются эти палочки, а затем обобщает ответы, подчеркивая, что палочки отличаются по цвету и блеску, они изготовлены из разного материала. Далее педагог предлагает ученикам найти одинаковое свойство у этих палочек. Ученики говорят, что у палочек одинаковая длина. Если дети не замечают этого, то учитель проводит сравнение палочек по длине, используя способы наложения и приложения.

— Положим перед собой одну палочку. Приложим к ней (наложим на нее) другую палочку так, чтобы их левые концы совпали. Теперь посмотрим на правые концы этих палочек. Мы видим, что они совпали. Это значит, что палочки одинаковые по длине. Говорят, что у этих палочек одинаковая длина. Вы видите, что эти палочки различаются по цвету, блеску, материалу, из которого они сделаны, но у них есть одинаковое общее свойство: у них одинаковая длина.

В ходе проведенной таким образом работы в сознании учеников происходит замена реально наблюдаемого свойства протяженности палочки словом длина и связанным с этим словом мысленным образом линейной пространственной протяженности, т.е. мысленной моделью протяженности реальной палочки. Элементами этой модели являются слово длина (слово мы рассматриваем как знак) и поставленный этому слову в соответствие мысленный образ линейной протяженности. Полученная модель является дочисловой, недостаточно точной. Числовая, более точная и полная, модель протяженности получается в результате измерения длины палочки, например, в сантиметрах. Для этого мы подсчитываем, сколько раз длина в 1 см (единица длины, эталон) укладывается в длине палочки; пусть, например, 7 раз. В этом случае мы говорим, что длина палочки равна семи сантиметрам (7 см). В результате измерения мы реально существующую длину (протяженность) палочки заменили (смоделировали) словосочетанием семь сантиметров. Это также мысленная (умственная) модель реальной протяженности (длины) палочки. Элементами этой модели являются словосочетание семь сантиметров и мысленный образ эталона длины в один сантиметр. Эта числовая модель протяженности палочки позволяет воссоздать (отмерить) ее реальную длину, перейти от модели к реальной действительности.

Явное использование моделирования при изучении длины позволяет более глубоко осознать ее как реальное свойство материальной протяженности реальных предметов. С другой стороны, толкование измерения длины как приема моделирования позволяет трактовать длину предмета как число мерок (единиц длины), укладывающихся на протяжении предмета (7 см — длина палочки), т.е. как числовую математическую модель реальной протяженности предмета.

 

Муравьи.

Выходные данные: Л.В. Рулевская «начальная школа». 2000-№5

Ссылка: https://n-shkola.ru/storage/archive/1407917517-2144470516.pdf


Познавательные возможности использования числовых данных на уроках математики.

Выходные данные: В. Ф. Ефимов «начальная школа». 2000-№5 выпуск

Ссылка: https://n-shkola.ru/storage/archive/1407917517-2144470516.pdf

 

 

 

 

 

 

Величина — понятие аксиоматическое.

Выходные данные: В.С. Самойлов «начальная школа». 2005-№7

Ссылка: https://n-shkola.ru/storage/archive/1407238695-1207148035.pdf

Понятие величина всегда в той или иной степени рассматривалось в курсе арифметики, а затем с 70х годов прошлого столетия и в курсе математики начальных классов. Термин величина стал широко использоваться в курсе математики в начальной школе. В курсе арифметики использовался другой термин — именованное число.

В большинстве учебников математики (например, учебники авторского коллектива под руководством М.И. Моро), по которым обучение начинается с изучения нумерации натуральных чисел первого десятка, сравнение величин и действий с величинами, как правило, сводятся к соответствующим операциям над числовыми значениями, т.е. проводятся опосредованно. И лишь в некоторых случаях сравнение производится непосредственно, например, с помощью наложения. Несмотря на то, что величины в указанных учебниках в основном отождествляются с числовыми значениями величин, постепенно у учащихся формируется представление о самих величинах: длине, площади, массе и т.д. При этом четкого обоснования связи величин и чисел (всякую величину a при выбранной единице измерения е можно представить в виде a = kе), непосредственного и опосредованного способов сравнения величин (если две величины находятся в отношении «больше», то и соответствующие числовые значения находятся в таком же отношении) не приводится. Указанные связи постепенно раскрываются в практических действиях над величинами.

Совершенно другой подход наблюдается в учебниках математики для начальных классов, написанных в соответствии с системой Д.Б. Эльконина — В.В. Давыдова. По этим учебникам курс математики начинают изучать с величин и их основных свойств. Сложение, вычитание, сравнение геометрических (длина, площадь) и физических величин (масса, время, емкость) проводятся с помощью практических действий: откладывания суммы отрезков, наложения отрезков, сравнения масс с помощью весов, уравнивания масс на весах и др., — в ходе которых выявляются и обобщаются основные свойства величин (сравнимость, возможность складывать, переместительное и сочетательное свойства сложения, возможность вычитать из большей величины меньшую, неизменяемость суммы при замене равных величин на равные, монотонность сложения), которые затем используются в качестве средства для изучения чисел, действий над ними и законов этих действий. Трудность, а во многих случаях невозможность непосредственного сравнения величин позволяет мотивировать введение понятия числа, после чего действия над величинами более обоснованно сводятся к действиям над числовыми значениями величин при выбранной единице измерения.

Таким образом, понятие величины как одно из важнейших математических понятий может служить теоретической основой для введения понятия числа и изучения действий с числами.

При сравнении методик формирования понятия числа в различных учебниках математики для начальных классов невольно возникает вопрос: что в своей практической деятельности человек начал использовать раньше — числа или величины? Ответ на этот вопрос склоняется в пользу величин, т.к. первоначально человек встретился с необходимостью сравнивать расстояния, длины предметов, например, при изготовлении стрел одинаковой длины. Позднее люди научились считать предметы, а вместе с ними и именованные числа. Другими словами, именованные числа — это форма представления величин. Числа как таковые еще не выделялись, они использовались только вместе с наименованиями. Чтобы получить числа в «чистом виде», необходимо было «оторвать» их от наименований, рассмотреть операции над ними и их свойства. Эта работа была проделана успешно в период образования научных школ в Древней Греции и в странах Дальнего Востока.

Обобщению творчества математиков школ Древней Греции посвящен знаменитый труд Евклида «Начала». Здесь приводится и первое аксиоматическое определение величины. Перечислим аксиомы Евклида:

· равные одному и тому же равны между собой

· если к равным прибавить равные, то и целые будут равны;

· если от равных отнимаются равные, то и остатки будут равны;

· если к неравным прибавляются равные, то и целые будут не равны;

· удвоенные одного и того же равны между собой;

· половины одного и того же равны между собой;

· совмещающиеся друг с другом равны между собой;

· целое больше части

Представленная система аксиом в целом не удовлетворяет современным требованиям, к подобного рода системам, т.к. она является зависимой и не является полной (например, четвертая аксиома является следствием второй). Однако математическая теория Евклида до сих пор обладает значительными дидактическими достоинствами: геометрический язык позволяет в тесной связи рассматривать арифметические, геометрические и алгебраические факты; достаточно простой язык позволяет использовать его в школьных курсах математики.

После Евклида многие известные математики (Архимед, Герон, Л. Эйлер и др.) пытались определить понятие величины, выделяя те или иные видовые отличия величины. Например, Герон Александрийский (I в.) утверждал, что величина есть все, что может быть увеличено или разделено безгранично, Л. Эйлер (XVIII в.) называл величиной все, что может увеличиваться или уменьшаться. До сих пор существуют попытки определить понятие величины, положив в основу только одно свойство, например, свойство сравнимости. В частности, в свое время о таких величинах писал академик А.Н. Крылов, соотнося их с такими свойствами, как красота, безобразие, храбрость, трусость и т.д.

Обобщением различных попыток определить понятие величины является система аксиом замечательного российского ученого, академика А.Н. Колмогорова (1903–1987). В этой аксиоматике первоначальное понятие «величина» является обобщением понятий длины, площади, массы и т.п. Каждый род величины связан с определенным способом сравнения физических тел и других объектов.

Таким образом, существующие подходы к определению понятия величины — аксиоматические. Это означает, что не существует какого-либо свойства, которое могло бы служить единственным видовым отличием для величины. Все сказанное говорит об имеющихся возможностях построения достаточно интересной теории скалярной величины для студентов. Понятие скалярной аддитивной величины — это неопределяемое понятие, которое находит свое наиболее полное описание с помощью одной из систем аксиом.


Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.039 с.