Исходное уравнение теплового баланса — КиберПедия 

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Исходное уравнение теплового баланса

2021-01-31 99
Исходное уравнение теплового баланса 0.00 из 5.00 0 оценок
Заказать работу

В основу теплового расчета рекуперативных теплообменных аппаратов положены уравнения теплового баланса и обобщенные уравнения теплопередачи. Уравнение теплового баланса теплообменных аппаратов формулируется следующим образом: количество теплоты в единицу времени (за вычетом тепловых потерь), отданное нагревающим теплоносителем, равно количеству теплоты, воспринятой нагреваемым теплоносителем, и равно количеству теплоты, переданного через стенку:

                                  (2.1.)

где ;  – полные (расходные) теплоемкости соответственно нагревающего и нагреваемого потоков (Вт/°С), называемые также водяными эквивалентами теплоносителей; ,  – изменение температуры нагревающего и нагреваемого потоков;  – коэффициент эффективности теплообменного аппарата; ,   – расходы теплоносителей в единицу времени (кг/с); ,  – средние удельные теплоемкости при постоянном давлении теплоносителей, Дж/(кг · К);  – средняя разность температур теплоносителей, называемая обычно среднелогарфмическим температурным напором (°С);  –водяной эквивалент поверхности теплопередачи, (Вт/К), состоящий из произведения коэффициента теплопередачи k (Вт/м2К) и площади теплопередачи Н (м2),обычно приравниваемую к площади поверхности самого аппарата, хотя строго формально это разные величины.

Уравнение теплового баланса теплообменного аппарата (2.1.) в зависимости от его назначения, конструктивного оформления может изменяться, но остается неизменным сформулированное равенство теплоты.

Формально в уравнении (2.1.) присутствует описание двух теплоносителей - горячего и холодного, однако для большинства аппаратов, за исключением АВО, необходимо было бы учесть потери тепла в третий теплоноситель, а именно - в окружающую среду, т.е. наружный воздух. Поэтому в уравнение и введен коэффициент эффективности теплообменного аппарата, который для различных типов аппаратов обычно определен экспериментально и нормирован. Его можно уменьшить путем нанесения теплоизолирующего слоя на наружную поверхность аппарата.

При отсутствии тепловых потерь ( =1) из уравнения теплового баланса (2.1.) следует, что изменения температуры однофазных жидкостей обратно пропорционально величинам   и .

Это соотношение действительно как для всей поверхности, так и для бесконечно малых ее элементов.

Существуют два вида теплового расчета теплообменных аппаратов: конструктивный (I рода) и поверочный (II рода).

В теплотехнических расчетах I рода, проводящихся чаще всего при проектировании, известны начальные и конечные температуры потоков ,  и , , известны или подсчитывают значения величин   и   обоих потоков; требуется определить комплекс kH, а затем величину площади теплообменного аппарата H. Эти расчеты проводятся в определенной последовательности.

1. По уравнению теплового баланса (2.1) определяется количество передаваемой теплоты в единицу времени (мощность теплообменного аппарата) .

2. Выбирается схема теплообмена проектируемого теплообменного аппарата (прямоток, противоток и др.).

3. Определяется средняя разность температур  в зависимости от значений начальных и конечных температур потоков и принятой схемы теплообмена.

4. Вычисляется комплекс .

5. Далее расчеты могут быть проведены двумя путями:

5.1.Вычисляется или выбирается по оценке коэффициент тепло
передачи ; затем определяются поверхность теплопередачи  и основные размеры теплообменного аппарата (D-диаметр трубок, L-их длинаи др.);

5.1.Осуществляется обработка данных теплотехнического испытания теплообменного аппарата, а именно, выбирается из каталога стандартный аппарат с известной площадью и по известному значению Нопределяется k.В теплотехнических расчетах II рода известны начальные температуры потоков , , известны или подсчитываются величины , , ; требуется определить конечные температуры потоков , . Последовательность расчетов II рода следующая:

определяется количество передаваемой теплоты  в единицу времени в зависимости от значений начальных температур потоков, значений , ,   и схемы теплообмена;

вычисляются конечные температуры потоков из уравнения теплового баланса (2.1).

;    и .

 Трудности в теплотехнических расчетах теплообменных аппаратов сводятся либо к определению средней разности температур (в расчетах первого рода), либо к определению количества передаваемой теплоты (в расчетах второго рода). Основной проблемой, как правило, является определение коэффициента теплопередачи, т.к. в него входит внешний и внутренний коэффициенты теплоотдачи и термическое сопротивление стенки, разделяющей теплоносители.


Поделиться с друзьями:

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.