II.1. Электрический потенциал — КиберПедия 

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

II.1. Электрический потенциал

2021-01-29 118
II.1. Электрический потенциал 0.00 из 5.00 0 оценок
Заказать работу

I.2. Зубец P

Электрический потенциал, выйдя за пределы синусового узла, охватывает возбуждением прежде всего правое предсердие, в котором находится синусовый узел. Так на ЭКГ записывается пик возбуждения правого предсердия.

Далее, по проводящей системе предсердий, а именно по межпредсердному пучку Бахмана, электроимпульс переходит на левое предсердие и возбуждает его. Этот процесс отображается на ЭКГ пиком возбуждения левого предсердия. Его возбуждение начинается в то время, когда правое предсердие уже охвачено возбуждением, что хорошо видно на рисунке.

Отображая возбуждения обоих предсердий, электрокардиографический аппарат суммирует оба пика возбуждения и записывает графически на ленте зубец P.

Таким образом, зубец P представляет собой суммационное отображение прохождения синусового импульса по проводящей системе предсердий и поочередное возбуждение сначала правого (восходящее колено зубца P), а затем левого (нисходящее колено зубца P) предсердий.

I.3. Интервал P-Q

Одновременно с возбуждением предсердий импульс, выходящий из синусового узла, направляется по нижней веточке пучка Бахмана к атриовентрикулярному (предсердножелудочковому) соединению. В нем происходит физиологическая задержка импульса (замедление скорости его проведения). Проходя по атриовентрикулярному соединению, электрический импульс не вызывает возбуждения прилежащих слоев, поэтому на электрокардиограмме пики возбуждения не записываются. Регистрирующий электрод вычерчивает при этом прямую линию, называемую изоэлектрической линией.

Оценить прохождение импульса по атриовентрикулярному соединению можно во времени (за сколько секунд импульс проходит это соединение). Таков генез интервала P-Q.

 

 

I.4. Зубцы Q, R и S

Продолжая свой путь по проводящей системе сердца, электрический импульс достигает проводящих путей желудочков, представленных пучком Гиса, проходит по этому пучку, возбуждая при этом миокард желудочков.

Этот процесс отображается на электрокардиограмме формированием (записью) желудочкового комплекса QRS.

Следует отметить, что желудочки сердца возбуждаются в определенной последовательности.

Сначала, в течение 0,03 с возбуждается межжелудочковая перегородка. Процесс ее возбуждения приводит к формированию на кривой ЭКГ зубца Q.

Затем возбуждается верхушка сердца и прилегающие к ней области. Так на ЭКГ появляется зубец R. Время возбуждения верхушки в среднем равно 0,05 с.

И в последнюю очередь возбуждается основание сердца. Следствием этого процесса является регистрация на ЭКГ зубца S. Продолжительность возбуждения основания сердца составляет около 0,02 с.

Вышеназванные зубцы Q; R и S образуют единый желудочковый комплекс QRS продолжительностью 0,10 с.

I.5. S- T и T

Охватив возбуждением желудочки, импульс, начавший путь из синусового узла, угасает, потому что клетки миокарда не могут долго оставаться возбужденными. В них начинаются процессы восстановления своего первоначального состояния, бывшего до возбуждения.

Процессы угасания возбуждения и восстановление исходного состояния миокардиоцитов также регистрируются на ЭКГ.

Электрофизиологическая сущность этих процессов очень сложна, здесь большое значение имеет быстрое вхождение ионов хлора в возбужденную клетку, согласованная работа калий-натриевого насоса, имеют место фаза быстрого угасания возбуждения и фаза медленного угасания возбуждения и др. Все сложные механизмы этого процесса объединяют обычно одним понятием – процессы реполяризации. Для нас же самое главное то, что процессы реполяризации отображаются графически на ЭКГ отрезком S-T и зубцом T.

 

I.6. Величины и продолжительность зубцов и интервалов

Для запоминания величины (высоты или глубины) основных зубцов необходимо знать: все аппараты, регистрирующие ЭКГ, настроены таким образом, что вычерчиваемая в начале записи контрольная кривая равна по высоте 10 мм, или 1 милливольту (mV).

Традиционно все измерения зубцов и интервалов принято производить во втором стандартном отведении, обозначаемом римской цифрой II. В этом отведении высота зубца R в норме должна быть равна 10 мм, или 1 mV.

Высота зубца T к глубине зубца S должны соответствовать 1/2-1/3 высоты зубца R или 0,5-0,3 mV.

Высота зубца P и глубина зубца Q будут равны 1/3-1/4 от высоты зубца R или 0,3-0,2 mV.

В электрокардиографии ширину зубцов (по горизонтали) принято измерять не в миллиметрах, а в секундах, например, ширина зубца P равняется 0,10 с. Эта особенность возможна потому, что запись ЭКГ производят на постоянной скорости протяжки ленты. Так, при скорости лентопротяжного механизма 50 мм/с, каждый миллиметр будет равен 0,02 с.

Для удобства характеристики продолжительности зубцов и интервалов запомните время, равное 0,10 ± 0,02 с. При дальнейшем изучении ЭКГ мы будем часто обращаться к этому времени.

Какова ширина зубца P (за какое время синусовый импульс охватит возбуждением оба предсердия)? Ответ: 0,10 ± 0,02 с.

Какова продолжительность интервала P-Q (за какое время синусовый импульс пройдет атриовентрикулярное соединение)? Ответ: 0,10 ± 02 с.

Какова ширина желудочкового комплекса QRS (за какое время синусовый импульс охватит возбуждением желудочки)? Ответ: 0,10 ± 0,02 с.

Сколько времени потребуется синусовому импульсу для возбуждения предсердий и желудочков (учитывая при этом, что в норме к желудочкам он может попасть только через атриовентрикулярное соединение)? Ответ: 0,30 + 0,02 с (0,10 – трижды).

Действительно, это время продолжительности возбуждения всех отделов сердца от одного синусового импульса. Эмпирически определено, что время реполяризации и время возбуждения всех отделов сердца приблизительно равно.

Следовательно, продолжительность фазы реполяризации равна приблизительно 0,30 ± 0,02 с.

II.3. Стандартные отведения

Как указывалось выше, каждая точка в электрическом поле имеет свой собственный потенциал. Сопоставляя потенциалы двух точек электрического поля, мы определяем разность потенциалов между этими точками и можем записать эту разность.Записывая разность потенциалов между двумя точками – правая рука и левая рука, один из основоположников электрокардиографии Эйнтховен (Einthoven, 1903) предложил такую позицию двух регистрирующих электродов назвать первой стандартной позицией электродов (или первым отведением), обозначая ее римской цифрой I. Разность потенциалов, определенная между правой рукой и левой ногой, получила название второй стандартной позиции регистрирующих электродов (или второго отведения) обозначаемой римской цифрой II. При позиции регистрирующих электродов на левой руке и левой ноге ЭКГ записывается в третьем (III) стандартном отведении.Если мысленно соединить между собою места наложения регистрирующих электродов на конечностях, мы получим треугольник, названный в честь Эйнтховена.Как вы убедились, для записи ЭКГ в стандартных отведениях используют три регистрирующих электрода, накладываемых на конечности. Чтобы не перепутать их при наложении на руки и ноги, электроды окрашивают разным цветом. Электрод красного цвета прикрепляется к правой руке, электрод желтого цвета – к левой; зеленый электрод фиксируется на левой ноге. Четвертый электрод, черный, выполняет роль заземления пациента и накладывается на правую ногу.Обратите внимание: при записи электрокардиограммы в стандартных отведениях регистрируется разность потенциалов между двумя точками электрического поля.Поэтому стандартные отведения называют еще и двухполюсными, в отличие от однополюсных (униполярных) отведений.

II.5. Грудные отведения

Помимо стандартных и однополюсных отведений от конечностей, в электрокардиографической практике применяются еще и грудные отведения.При записи ЭКГ в грудных отведениях регистрирующий однополюсный электрод прикрепляется непосредственно к грудной клетке. Электрическое поле сердца здесь наиболее сильное, поэтому нет необходимости усиливать грудные униполярные отведения, но не это главное.Главное в том, что грудные отведения, как отмечалось выше, регистрируют электрические потенциалы с другой эквипотенциальной окружности электрического поля сердца.Так, для записи электрокардиограммы в стандартных и однополюсных отведениях потенциалы регистрировались с эквипотенциальной окружности электрического поля сердца, расположенной во фронтальной плоскости (электроды накладывались на руки и на ноги).При записи ЭКГ в грудных отведениях электрические потенциалы регистрируются с окружности электрического поля сердца, которая располагается в горизонтальной плоскости.

Места прикрепления регистрирующего электрода на поверхности грудной клетки строго оговорены: так при позиции регистрирующего электрода в 4 межреберье у правого края грудины ЭКГ записывается в первом грудном отведении, обозначаемом как VI.Ниже приводится схема расположения электрода и получаемые при этом электрокардиографические отведения:

Отведения    

Местоположение регистрирующего электрода

VI      

в 4-м межреберье у правого края грудины

V2      

в 4-м межреберье у левого края грудины

V3      

на середине расстояния между V2 и V4

V4 V5

в 5-м межреберье на срединно-ключнчной линии на пересечении горизонтального уровня 5-го межреберья и передней подмышечной линии

V6      

на пересечении горизонтального уровня 5-го межреберья и средней подмышечной линии

V7      

на пересечении горизонтального уровня 5-го межреберья и задней подмышечной линии

V8      

на пересечении горизонтального уровня 5-го межреберья и срединно-лопаточной линии

V9      

на пересечении горизонтального уровня 5-го межреберья и паравертебральной линии

Отведения V7, V8, и V9 не нашли своего широкого применения в клинической практике и почти не используются.

Первые же шесть грудных отведений (VI-V6) наряду с тремя стандартными (I, II, III) и тремя усиленными однополюсными (aVR, aVL, aVF) составляют 12 общепринятых отведений.

VI.1. Экстрасистолия

Среди различных нарушений ритма сердца экстрасистолия встречается чаще всего.Под экстрасистолией понимают внеочередное возбуждение (и последующее сокращение) всего сердца или его отделов.Причиной экстрасистолы считают наличие активного гетеротопного очага, который генерирует достаточно значимый по электрической силе импульс, способной «перебить», нарушить работу основного водителя ритма сердца – синусового узла.Если гетеротопный (он же эктопический) очаг, вызывающий внеочередное возбуждение (сокращение) сердца, находится в предсердиях, такую экстрасистолу принято называть предсердной.При желудочковой экстрасистоле эктопический очаг находится соответственно в желудочках.

 

Первый ЭКГ признак

Поскольку экстрасистола – это внеочередное возбуждение, то на ЭКГ ленте месторасположение ее будет раньше предполагаемого очередного синусового импульса. Поэтому предэкстрасистолический интервал, T. е. интервал R(синусовый) – R(экстрасистолический) будет меньше интервала R(синусовый) – R(синусовый).

Краткая запись – интервал R(c)-R(э) < интервала R(c)-R(c).

Второй ЭКГ признак

Поскольку экстрасистолический (он же эктопический, он же гетеротопный) очаг находится в предсердиях, то предсердия будут вынуждены возбуждаться от импульса из этого очага. Возбуждение предсердий отображается на ЭКГ формированием зубца P.Следовательно, перед желудочковым экстрасистолическим комплексом будет регистрироваться экстрасистолический зубец P, отличный от нормального зубца P.

Краткая запись – имеется зубец P(э), отличный от зубца P(с).

Третий ЭКГ признак

Поскольку экстрасистолический импульс после возбуждения предсердий попадает к желудочкам по основным нормальным проводящим путям (атриовентрикулярное соединение, пучок Гиса, его ножки), то форма желудочкового экстрасистолического комплекса ничем не отличается от формы нормального (синусового) желудочкового комплекса.Краткая запись – по форме QRS(э) не отличается от QRS(c).

Четвертый ЭКГ признак

Непосредственно после экстрасистолического импульса в подавляющем большинстве случаев имеет место постэкстрасистолический интервал, или компенсаторная пауза. Если сложить длину предэкстрасистолического и постэкстрасистолического интервалов, то при полной компенсаторной паузе указанная сумма интервалов будет равна длине двух нормальных синусовых интервалов R-R. В случае предсердной экстрасистолии компенсаторная пауза является неполной, T. е. сумма пред- и постэкстрасистолического интервалов меньше длины двух синусовых интервалов R-R.

Краткая запись – неполная компенсаторная пауза. Интервал R(c)-R(э)-R(c) < интервала R(c)-R(c)-R(c).

 

Первый ЭКГ признак

Этот пpизнак характеризует экстрасистолу как таковую, вне зависимости от места расположения эктопического очага.

Краткая запись – интервал R(c)-R(э) < интервала R(c)-R(c).

Второй ЭКГ признак

Атриовентрикулярное соединение способно пропускать любые импульсы только в одном направлении – от предсердий к желудочкам. Поэтому экстрасистолический импульс, возбудив желудочки, к предсердиям через атриовентрикулярное соединение не пройдет.

Следовательно, предсердия от экстрасистолического импульса не возбудятся и зубца P(э) перед экстрасистолическим желудочковым комплексом не будет.

Краткая запись – отсутствует P(э).

Третий ЭКГ признак

Топически располагаясь в одном из желудочков, экстрасистолический очаг возбудит сначала желудочек, в котором он находится, а затем другой желудочек, T. е. желудочки будут возбуждаться не одновременно, а поочередно. Следовательно, желудочковый экстрасистолический комплекс QRS будет уширен более 0,12 с, деформирован как при блокаде ножки пучка Гиса

Краткая запись – комплекс QRS(э)>0,12", деформирован.

Четвертый ЭКГ признак

Поскольку экстрасистолический импульс ретроградно не преодолевает атриовентрикулярное соединение и не распространяется по предсердиям, то он не нарушает ритмичную работу синусового узла, T. е. не разряжает его. Поэтому сумма предэкстрасистолического и постэкстрасистолического интервалов равна двум нормальным синусовым интервалам R-R, T е имеет место полная компенсаторная пауза.

Краткая запись – полная компенсаторная пауза. Интервал R(c)-R(э)-R(c) = интервалу R(c)-R(c)-R(c).

 

VI.4.1. Мерцание предсердий

При этой разновидности нарушения ритма в различных участках миокарда предсердий появляется множество очагов возбуждения, генерирующих 450-600 импульсов в минуту. Следовательно, ежесекундно к атриовентрикулярному соединению подходят около 10 импульсов, разных по электрической силе. Естественно, пропустить все эти импульсы атриовентрикулярное соединение физиологически не в состоянии. Проходят лишь самые сильные из них, не попавшие в стадию функциональной атриовентрикулярной блокады, при этом интервалы прохождения различны и желудочки возбуждаются аритмично, но обычным путем, поэтому форма и продолжительность комплекса QRS обычны.В практике эту разновидность аритмии называют упрощенно «мерцательной аритмией», однако грамотнее употреблять термин «мерцание предсердий с аритмической деятельностью желудочков».

Разберем ЭКГ признаки мерцательной аритмии:

1.Высокая частота мерцания (450-600 в мин) не дает возможности проявиться синусовому ритму (частота – 60- 90 в минуту), поэтому на ЭКГ отсутствует зубец P.

2.Вместо зубца P регистрируются волны мерцания (волны фибрилляции), обозначаемые буквой f, которые лучше всего визуализируются в отведении VI и V2.

3.Частота волн мерцания – 450-600 в мин.

4.Желудочковые комплексы QRS регистрируются аритмично, интервалы R-R различны.

5.Форма желудочкового комплекса QRS обычная, его ширина не превышает 0,12 с.

6.Частота возбуждения желудочков (ЧСС) обычно в пределах нормы (нормосистолический вариант).

 

VI.4.2. Мерцание желудочков

Мерцание желудочков (фибрилляция) – это состояние клинической смерти пациента и требует немедленного проведения реанимационных мероприятий.

Электрокардиографические критерии фибрилляции следующие:

1.Отсутствие на ЭКГ типичной кривой с дифференцированными привычными зубцами P, Q, R, S и T.

2.Вместо них регистрируются небольшие различные по величине (0,1-0,3 mV), неодинаковой формы волны фибрилляции.

3.Расстояние между пиками волн различны.

4.Нет четкой изолинии; кривая фибрилляции приобретает хаотическую причудливую форму.

 

VII.2. Локализация инфаркта

Приведенное выше перечисление ЭКГ признаков инфаркта миокарда позволяет уяснить принцип определения его локализации.Итак, инфаркт миокарда локализован в тех анатомических областях сердца, в отведениях от которых регистрируются 1, 2, 3 и 5-й признаки, 4-й признак играет роль вспомогательно-подтверждающего

 

I.2. Зубец P

Электрический потенциал, выйдя за пределы синусового узла, охватывает возбуждением прежде всего правое предсердие, в котором находится синусовый узел. Так на ЭКГ записывается пик возбуждения правого предсердия.

Далее, по проводящей системе предсердий, а именно по межпредсердному пучку Бахмана, электроимпульс переходит на левое предсердие и возбуждает его. Этот процесс отображается на ЭКГ пиком возбуждения левого предсердия. Его возбуждение начинается в то время, когда правое предсердие уже охвачено возбуждением, что хорошо видно на рисунке.

Отображая возбуждения обоих предсердий, электрокардиографический аппарат суммирует оба пика возбуждения и записывает графически на ленте зубец P.

Таким образом, зубец P представляет собой суммационное отображение прохождения синусового импульса по проводящей системе предсердий и поочередное возбуждение сначала правого (восходящее колено зубца P), а затем левого (нисходящее колено зубца P) предсердий.

I.3. Интервал P-Q

Одновременно с возбуждением предсердий импульс, выходящий из синусового узла, направляется по нижней веточке пучка Бахмана к атриовентрикулярному (предсердножелудочковому) соединению. В нем происходит физиологическая задержка импульса (замедление скорости его проведения). Проходя по атриовентрикулярному соединению, электрический импульс не вызывает возбуждения прилежащих слоев, поэтому на электрокардиограмме пики возбуждения не записываются. Регистрирующий электрод вычерчивает при этом прямую линию, называемую изоэлектрической линией.

Оценить прохождение импульса по атриовентрикулярному соединению можно во времени (за сколько секунд импульс проходит это соединение). Таков генез интервала P-Q.

 

 

I.4. Зубцы Q, R и S

Продолжая свой путь по проводящей системе сердца, электрический импульс достигает проводящих путей желудочков, представленных пучком Гиса, проходит по этому пучку, возбуждая при этом миокард желудочков.

Этот процесс отображается на электрокардиограмме формированием (записью) желудочкового комплекса QRS.

Следует отметить, что желудочки сердца возбуждаются в определенной последовательности.

Сначала, в течение 0,03 с возбуждается межжелудочковая перегородка. Процесс ее возбуждения приводит к формированию на кривой ЭКГ зубца Q.

Затем возбуждается верхушка сердца и прилегающие к ней области. Так на ЭКГ появляется зубец R. Время возбуждения верхушки в среднем равно 0,05 с.

И в последнюю очередь возбуждается основание сердца. Следствием этого процесса является регистрация на ЭКГ зубца S. Продолжительность возбуждения основания сердца составляет около 0,02 с.

Вышеназванные зубцы Q; R и S образуют единый желудочковый комплекс QRS продолжительностью 0,10 с.

I.5. S- T и T

Охватив возбуждением желудочки, импульс, начавший путь из синусового узла, угасает, потому что клетки миокарда не могут долго оставаться возбужденными. В них начинаются процессы восстановления своего первоначального состояния, бывшего до возбуждения.

Процессы угасания возбуждения и восстановление исходного состояния миокардиоцитов также регистрируются на ЭКГ.

Электрофизиологическая сущность этих процессов очень сложна, здесь большое значение имеет быстрое вхождение ионов хлора в возбужденную клетку, согласованная работа калий-натриевого насоса, имеют место фаза быстрого угасания возбуждения и фаза медленного угасания возбуждения и др. Все сложные механизмы этого процесса объединяют обычно одним понятием – процессы реполяризации. Для нас же самое главное то, что процессы реполяризации отображаются графически на ЭКГ отрезком S-T и зубцом T.

 

I.6. Величины и продолжительность зубцов и интервалов

Для запоминания величины (высоты или глубины) основных зубцов необходимо знать: все аппараты, регистрирующие ЭКГ, настроены таким образом, что вычерчиваемая в начале записи контрольная кривая равна по высоте 10 мм, или 1 милливольту (mV).

Традиционно все измерения зубцов и интервалов принято производить во втором стандартном отведении, обозначаемом римской цифрой II. В этом отведении высота зубца R в норме должна быть равна 10 мм, или 1 mV.

Высота зубца T к глубине зубца S должны соответствовать 1/2-1/3 высоты зубца R или 0,5-0,3 mV.

Высота зубца P и глубина зубца Q будут равны 1/3-1/4 от высоты зубца R или 0,3-0,2 mV.

В электрокардиографии ширину зубцов (по горизонтали) принято измерять не в миллиметрах, а в секундах, например, ширина зубца P равняется 0,10 с. Эта особенность возможна потому, что запись ЭКГ производят на постоянной скорости протяжки ленты. Так, при скорости лентопротяжного механизма 50 мм/с, каждый миллиметр будет равен 0,02 с.

Для удобства характеристики продолжительности зубцов и интервалов запомните время, равное 0,10 ± 0,02 с. При дальнейшем изучении ЭКГ мы будем часто обращаться к этому времени.

Какова ширина зубца P (за какое время синусовый импульс охватит возбуждением оба предсердия)? Ответ: 0,10 ± 0,02 с.

Какова продолжительность интервала P-Q (за какое время синусовый импульс пройдет атриовентрикулярное соединение)? Ответ: 0,10 ± 02 с.

Какова ширина желудочкового комплекса QRS (за какое время синусовый импульс охватит возбуждением желудочки)? Ответ: 0,10 ± 0,02 с.

Сколько времени потребуется синусовому импульсу для возбуждения предсердий и желудочков (учитывая при этом, что в норме к желудочкам он может попасть только через атриовентрикулярное соединение)? Ответ: 0,30 + 0,02 с (0,10 – трижды).

Действительно, это время продолжительности возбуждения всех отделов сердца от одного синусового импульса. Эмпирически определено, что время реполяризации и время возбуждения всех отделов сердца приблизительно равно.

Следовательно, продолжительность фазы реполяризации равна приблизительно 0,30 ± 0,02 с.

II.1. Электрический потенциал

Тот, кто когда-нибудь наблюдал процесс записи ЭКГ у пациента, невольно задавался вопросом: почему, регистрируя электрические потенциалы сердца, электроды для этих целей накладывают на конечности – на руки и на ноги?Как вы уже знаете, сердце (конкретно – синусовый узел) вырабатывает электрический импульс, который имеет вокруг себя электрическое поле. Это электрическое поле распространяется по нашему телу концентрическими окружностями.Если измерить потенциал в любой точке одной окружности, то измерительный прибор покажет одинаковое значение потенциала. Такие окружности принято называть эквипотенциальными, T. е. с одинаковым электрическим потенциалом в любой точке.Кисти рук и стопы ног как раз и находятся на одной эквипотенциальной окружности, что дает возможность, накладывая на них электроды, регистрировать импульсы сердца, T. е. электрокардиограмму.


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.095 с.