Строение пептидов. Характеристика пептидов токсинов, антибиотиков и вкусовых пептидов. — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Строение пептидов. Характеристика пептидов токсинов, антибиотиков и вкусовых пептидов.

2020-12-08 215
Строение пептидов. Характеристика пептидов токсинов, антибиотиков и вкусовых пептидов. 0.00 из 5.00 0 оценок
Заказать работу

Пептидами называются соединения, образованные из аминокислот с помощью пептидных связей. Условно считают, что пептиды содержат менее 50 АК, а более длинные полипептиды уже относят к белкам. Структурные особенности пептидов: 1. Пептиды могут содержать D-аминокислоты, так, антибиотик пенициллин содержит L-цис и D-вал

 

Рис. 3.7 Строение антибиотика пенициллина – циклического депептида

2. Пептиды могут содержать аналоги АК, например депептид карнозин представляет собой β-аланин-гистидин. 3. Пептиды образуют циклические структуры. Эту особенность можно видеть в молекулах пенициллина, грамицидина, валиномицина и других. 4. В состав пептидов могут входить небелковые АК, например грамицидин содержит орнитин – более короткий гомолог лизина. Пептиды – токсины. Среди пептидных токсинов наиболее известны токсины ядовитых грибов. Так, бледная поганка Amanita phalloides содержит пептидные токсины аманитин и феллоидин, а также ряд токсинов, объединяемых общим названием – аматоксины. Они содержатся в этих грибах в высоких концентрациях, например аматоксины – до 0,4 мг на 1 г массы гриба. Если учесть, что смертельная доза для человека составляет около 5-7 мг, то есть один-два съеденных грибы могут вызвать смерть. Все токсины этого вида – циклические пептиды. Токсическое действие аматоксинов связано с нарушением синтеза РНК в клетках, а фаллоидин нарушает целостность мембраны клеток печени – гепатоцитов. Пептидные токсины из ядов пчел (Apis melifera) Апамин – линейный пептид из 18 АК, влияет на работу кальциевых каналов в мембранах, меллитин – пептид из 22 АК – вызывает ионную проводимость в мембранах, а третий – МСД-пептид вызывает аллергические и воспалительные реакции. Пептидные токсины из ядов змей по числу АК можно отнести к белковым веществам, но их традиционно рассматривают как пептиды. Среди них различают более короткие – по 60-62 АК и более длинные – до 71-74 АК. Эти токсины, как правило, действуют на мембраны нервных клеток или аксионов, нарушая их нормальное функционирование, но в малых концентрациях, так же как и токсины яда пчел, используются как эффективные лекарственные средства против ряда заболеваний, связанных с нервно-мышечными расстройствами. Яд скорпионов содержит пептидные нейротоксины из 15-16 АК, которые замедляют передачу нервных импульсов. Уникальным свойством яда скорпионов является способность его токсинов избирательно действовать только на один из классов животных: млекопитающих, насекомых или ракообразных. К собственному токсину у скорпиона существует врожденный иммунитет. Пептидные токсины морских беспозвоночных – моллюсков, медуз, актиний, анемон – содержат около 50АК и, подобно токсинам из яда скорпионов, влияют на натриевые каналы электровозбудиных мембран. Пептиды – антибиотики. Пенициллин – его структура приведена выше – широко известный антибиотик, используемый при различных инфекционных заболеваниях. Грамицидин содержит около 10 АК, имеет циклическую структуру, разностороннюю биологическую активность, например разрушает биологические мембраны. Бацитрацин – нарушает синтез клеточной стенки бактерий, приводя их к гибели. Актиномицины связываются с молекулой ДНК и нарушают ее функционирование.

24. Функции белков. Роль белков в питании, нормы потребления. Подобно другим питательным веществам, белки выполняют пластическую и энергетическую функцию. Белки — строительные молекулы. Они входят в состав всех клеточных и внеклеточных структур. До 12% общей массы клетки приходится на долю белков. Все ферменты организма — белки. Белки обеспечивают транспортные функции крови, в том числе и транспорт кислорода и углекислого газа (гемоглобин эритроцитов — белок). Гемоглобин — основа самой мощной буферной системы крови. Вместе с другими белками плазмы крови гемоглобин поддерживает РН (уровень кислотности) жидких сред организма на постоянном уровне. Белки удерживают воду в сосудистом русле. Белки крови определяют величину и направление процессов фильтрации в капиллярах. Белки печени, мышц, альбуминовая фракция белков плазмы крови составляют белковый резерв организма. Белки обеспечивают восприятие сигналов, так как они образуют рецепторные структуры клеточных мембран. Глобулиновая фракция белков плазмы крови обеспечивает защитные — иммунные реакции организма. Наконец, белки могут выполнять и энергетическую функцию. Так при полном окислении 1 г белка выделяется 4,2 ккал. Потребность человеческого организма в белке зависит от возраста, пола, климатических особенностей региона и характера трудовой деятельности. Оптимальным считается количество белка не менее 1 г на 1 кг массы тела. Таким образом, потребность взрослого человека в белке в среднем составляет 65-108 г в сутки. Потребность в белке у детей – 1,5-4,0 г на 1 кг массы. При этом белки животного происхождения должны составлять 60%.Следует, однако, отметить, что потребность в белках определяется эффективностью обмена и утилизацией белка организмом. При этом зависимость между количеством белка, поступающим с пищей, и состоянием организма немного сложнее.

25. Проблема белкового дефицита и пути её преодоления. На каждого жителя Земли приходится около 60 г белка в сутки, при норме 70. Общий дефицит белка на планете оценивается в 10-25 млн т в год. Из 6 млрд человек, живущих на Земле, приблизительно половина страдает от недостатка белка. Традиционным путем увеличения ресурсов пищевого белка является повышение производительности растениеводства и животноводства на основе технологий возделывания зернобобовых, масличных и злаковых культур, употребляемых как непосредственно в пищу, так и на корм скоту. Наибольшее количество белка, и особенно лизина, обеспечивают посевы зернобобовых культур: сои, нута, чечевицы, гороха, люпина. Однако, бобовые культуры, используемые непосредственно в пищу, не являются традиционными для многих народов, к тому же трудно достичь высоких урожаев и расширения площадей посева любой культуры в силу особенностей почвенно-климатических условий выращивания и применения агротехнических мероприятий. Растительный рацион, содержащий полноценный белок в необходимом количестве, может быть создан на основе использования пищевых продуктов, полученных из разных источников. Например, кукуруза бедна триптофаном и лизином, а бобовые – метионином, поэтому смесь, состоящая из кукурузы и соевых продуктов или овощей, обеспечивает поступление в организм «качественного белка».

26. Физиологические функции аминокислот в организме. Аминокислоты необходимы для того, чтобы из них синтезировались белки, входящие в состав органов организма и его тканей. Из белков формируются все органы и железы, связки, мышцы, сухожилия, ногти, волосы и т.д. Каждый белок предназначен для своих целей.Кроме этого, аминокислоты необходимы для полноценной работы головного мозга, являясь предшественниками нейромедиаторов, или даже выполняя их роль, передавая от одной нервной клетки к другой нервный импульс. Отдельные аминокислоты непосредственно воздействуют на мышечную ткань, снабжая её энергией. Особенно важны аминокислоты триптофан, метионин и лизин. Их идеальное сочетание 1:3,5:5,5. Незаменимые кислоты содержатся в следующих продуктах: Валин – в зерновых, грибах, мясе, молочных продуктах, сое, арахисе. Изолейцин – в орехах кешью и миндале, курином мясе и яйцах, рыбе, печени, мясе, ржи, чечевице, сое и в большинстве семян. Лейцин – в мясе и рыбе, орехах, чечевице, буром рисе и также в большинстве семян. Лизин – в рыбе, мясе, молоке и молочных продуктах, пшенице и орехах. Метионин – в молоке, рыбе, яйцах, мясе, бобовых. Треонин – в яйцах и молочных продуктах. Триптофан – в мясе, бананах, финиках, кунжуте, арахисе, овсе. Фенилаланин – в говядине, курице, рыбе, яйцах, сое, молоке и твороге.

27. Строение, классификация и биологическая ценность белков. Классификация белков: а) По составу: простые белки (состоят только из АК), сложные белки включают кроме АК, другие компоненты. б) По строению белковых молекул: глобулярные (иммуноглобулины, гемоглобин, ферменты) и фибриллярные (коллаген, кератин, фиброин). Структура белковых молекул имеет 4 уровня организации: первичная структура – последовательность АК в полипептидной цепи, вторичная структура – расположение полипептидных цепей в виде спирали или в виде складочных структур, которые поддерживаются, в основном, водородными связями, третичная структура – трехмерное расположение полипептидной цепи в пространстве, при этом возможно множество конформаций белковой молекулы, эта структура поддерживается водородными, ионными, гидрофобными связями, четверичная структура – комплекс нескольких полипептидных цепей (субъединиц), связанных водородными, ванн-дер-ваальсовыми и другими нековалентными взаимодействиями. Для структуры белков очень важно такое понятие как конформация, то есть форма молекулы, в которой пространственное расположение групп изменяется благодаря свободному вращению вокруг простых сигма-связей, при этом сохраняется порядок связей, их длина. Биологическая ценность белков пищевых продуктов зависит от соотношения в них незаменимых аминокислот, которые не могут синтезироваться в организме и должны поступать только с пищей. Для оценки биологической ценности пищевой продукции ее аминокислотный состав сравнивают с аминокислотным составом идеального белка, определяя аминокислотный химический скор. Лимитирующей биологическую ценность аминокислотой считается та, скор которой имеет наименьшее значение.АК скор = (мг АК в 1г исслед.белка/мг АК в 1г идеал.белка)*100

28. Качество белка и методы его оценки. Пути повышения белковой ценности продуктов. Для оценки биологической ценности пищевой продукции ее аминокислотный состав сравнивают с аминокислотным составом идеального белка, определяя аминокислотный химический скор. Лимитирующей биологическую ценность аминокислотой считается та, скор которой имеет наименьшее значение. АК скор = (мг АК в 1г исслед.белка/мг АК в 1г идеал.белка)*100

Другой метод определения биологической ценности белков заключается в определении индекса незаменимых аминокислот (ИНАК). Метод представляет собой модификацию метода химического скора (Oser, 1951) и позволяет учитывать количество всех незаменимых аминокислот. Индекс рассчитывается по формуле: ИНАК = n√лизб/лизэ*триб/триэ*…*гимб/гисэ где n – число аминокислот; индексы б,э – содержание аминокислоты в изучаемом и эталонном белке, соответственно. Показатели биологической ценности белков необходимо учитывать при составлении рационов питания, взаимно дополняя лимитирующие аминокислоты. В большей степени этого можно добиться, сочетая растительные и животные белки.

29. Характеристика белков злаков. Среднее содержание белков в злаках составляет от 7 до 17%. Причем наиболее белковистой является пшеница, наименьшее количество белка – в рисе и кукурузе (7 – 9%).Белки неравномерно распределяются между морфологическими частями зерна. Основное их количество приходится на эндосперм (65 – 75%); на зародыш до 22%, на алейроновый слой до 15,5%. В эндосперме белки распределены также неравномерно, концентрация их снижается по мере продвижения к центру. Центральная часть эндосперма содержит мало белка (7 – 9%).Распределение белка по частям зерновки зависит от вида культуры, ее сорта и почвенно-климатических условий выращивания. Биологическая ценность белков злаков различна. В таблице 4.1 представлено содержание незаменимых аминокислот в суммарных зерновых белках.Анализируя аминокислотный состав суммарных белков различных злаковых культур с точки зрения состава эталонного белка для питания людей (ФАО, 1973) следует отметить, что все они, за исключением гречихи и овса, бедны лизином (2,2 – 3,3%), а за исключением риса, гречихи и сорго – изолейцином. Для белков пшеницы, сорго, ячменя и ржи характерно относительно небольшое количество метионина (1,6 – 1,7мг/100 г белка). Белки пшеницы к тому же содержат недостаточное количество треонина (2,6%), а белки кукурузы – триптофана (0,6%). Наиболее сбалансированными по аминокислотному составу являются овес и гречиха.По содержанию валина зерно гречихи может быть приравнено к молоку, по лейцину – к говядине, фенилаланину – к молоку и говядине. По содержанию триптофана зерно гречихи не уступает продуктам животного происхождения. Белки зерна гречихи хорошо сбалансированы по содержанию незаменимых аминокислот. Исключение составляют серосодержащие аминокислоты, которых недостаточно в белках зерна гречихи.

30. Характеристика белков семян бобовых и масличных культур. Наибольшая часть белков сосредоточена в ростках, их содержание в семенных оболочках ограничено. В семенных оболочках гороха по сравнению с другими культурами содержится наименьшая доля белков. Содержание белков в его ростках по сравнению с фасолью и чечевицей больше. Чечевица отличается более высоким, чем горох и фасоль содержанием белков в семядолях. Для семян фасоли характерно по сравнению с семенами других бобовых наибольшее сосредоточение белков в семенных оболочках. Содержание белков бобовых от 25 до 30 (соя 39). Проламиновая фракция в белках семян бобовых отсутствует. Основная фракция – глобулины. Наименьшее количество приходится на долю глютелинов. Альбуминов немного больше, чем глютелинов. В семенах бобовых найдены отдельные, характерные для той или другой культуры белки – в семенах гороха водорастворимый легумелин и два глобулина (легумин и вицилин), в семенах фасоли – глобулин фазеолин, в семенах сои – глобулин глицинин. Для полного усвоения белка бобовых культур живым организмом необходима их предварительная обработка. Сырое зерно содержит лишь 15–20% усвояемого белка. Глобулиновая фракция белков фасоли устойчива к некоторым протеолитическим ферментам. Благодаря высокому содержанию белков, богатых незаменимыми аминокислотами, семена бобовых культур – один из важнейших источников белка. Среди бобовых культур в качестве источника пищевого биологически ценного белка наибольшее значение имеют семена сои. С их использованием организовано использование соевой муки (обезжиренной, полужирной и необезжиренной), концентратов и изолятов.

31. Характеристика белков картофеля, овощей и плодов. Большую часть азотистых веществ, содержащихся в плодах и овощах, составляют белки, меньшую часть – свободные аминокислоты и еще меньшую – амиды: аспарагин и глутамин. В целом овощи характеризуются низким содержанием запасных белков. Больше всего их в зеленом горошке – в среднем 5,0%, в овощной фасоли – 4,0, шпинате – 2,9, цветной капусте – 2,5, картофеле – 2,0, моркови – 1,5, томатах – 0,6%. Еще меньше белков во многих плодах. Но в некоторых плодах белков содержится не меньше, чем в овощах. Так, в маслине содержится в среднем 7% белков, ежевике – 2%, бананах – 1,5%. Большая часть белков картофеля (70%) представлена глобулинами, меньшая (30%) – альбуминами. Среди овощных культур большим содержанием белка отличаются зеленый горошек (28,3 – 31,9%) и сахарная кукуруза (10,4 – 14,9% в расчете на сухой вес). Основную долю в зеленом горошке составляют глобулины (вицилин и легулин), в кукурузе – спирторастворимый зеин. У зеленого горошка отмечается высокое содержание альбуминов, которое в 2 – 3 раза выше, чем в зрелом горохе гладкозерных сортов. По сравнению с зерновой кукурузой овощная кукуруза содержит значительно больше альбуминов, глобулинов и проявляет тенденцию к меньшему содержанию щелочерастворимых белков. Содержание зеина составляет 21,1 – 37,2% от общего белка, что значительно меньше, чем в кукурузе других ботанических групп (41 – 58%). Особенность фракционного состава зеленого горошка и кукурузы благоприятно отражается на их аминокислотном составе. Значительную долю аминокислот горошка составляют лейцин с изолейцином (15,4% от общего количества), фенилаланин (7,1%), валин с метионином (5,2%),аргинин (10,5%) и треонин (5,2%). Для белков сахарной кукурузы характерно высокое содержание лейцина и изолейцина – 15,1%, аргинина 12,4%, глутаминовой кислоты 17,3%, аланина, глицина, серина 9,0%, гистидина 4,2%, лизина 1,1%. Высокое содержание в зеленом горошке и сахарной кукурузе лизина и аргинина объясняется повышенным количеством альбуминов, а кукурузе – и пониженным содержанием неполноценного зеина.

32. Новые формы белковой пищи на основе соевых белков. Новые формы белковой пищи – это продукты питания, получаемые на основе различных белковых фракций продовольственного сырья с применением научно обоснованных способов переработки и имеющие определенный химический состав, структуру и свойства, включая биологическую ценность.. К потенциальным сырьевым источникам относят: зернобобовые (соя, горох, чечевица, люпин, фасоль, нут); хлебные и крупяные культуры (пшеница, тритикале, рожь, овес, ячмень, кукуруза) и побочные продукты их переработки (отруби, сечка, мучка, зародыш); масличные (подсолнечник, лен, рапс, кунжут); псевдозлаковые (амарант); овощи и бахчевые (картофель, тыква); вегетативная масса растений (люцерна, клевер, люпин, сахарная свекла, зеленый табак); продукты переработки фруктов и ягод (косточки абрикоса, сливы, вишни, кизила, винограда и т.д.); кедровые и другие виды орехов. Из известных растительных источников пищевого белка наибольшее значение имеют семена сои. На современном рынке пищевых ингредиентов соевые белки представлены изолятами, концентратами, текстурированными соевыми продуктами и различными видами соевой муки или крупки. Соевую муку производят в значительном количестве и используют для разных целей: получения соевого белка, блинной муки, в хлебопечении и т.д. Ее вырабатывают из семян сои, соевого жмыха и соевого шрота. Пищевой соевый жмых получают при отжиме масла из сои путем прессования, соевый шрот – при выработке масла путем экстрагирования.

33. Характеристика ингибиторов трипсина и лектинов, содержащихся в семенах сои, и методы их инактивации. В зернах злаковых и семенах бобовых культур содержатся белки-ингибиторы, способные соединяться с протеолитическими ферментами, снижая их активность, что также может сказываться на качестве клейковины. Наряду с белками, обладающими питательной ценностью, в состав бобовых культур входят антиалиментарные соединения, имеющие также белковую природу. Они понижают питательную ценность белковых продуктов и пищевых изделий. К таким соединениям относятся ингибиторы протеаз желудочно-кишечного тракта и лектины. В семенах сои содержится не менее пяти ингибиторов трипсина в количестве 5 – 10% от общего содержания белка. Наиболее хорошо изучены ингибитор Кунитца, на долю которого приходится 90% общей активности ингибиторов, и Баумана–Бирк. Ингибиторы представляют собой белковые молекулы с молекулярными массами 21,5 и 8 кД, соответственно. В состав всех ингибиторов трипсина входят, расположенные в пространстве особым образом, остатки лизина или аргинина. Белковые ингибиторы различаются по специфичности, выражающейся в неодинаковой способности подавлять активность различных ферментов. Так, ингибитор Кунитца из сои подавляет активность трипсина и фермента крови плазмина, но слабо ингибирует химотрипсин, а ингибитор Баумана–Бирк снижает активность не только трипсина, но и химотрипсина. В технологических процессах производства белковых продуктов из сои предусматривается инактивация ингибиторов протеиназ обработкой паром, микроволновым нагревом, вымачиванием с последующим кипячением и другими способами. Инактивация ингибиторов трипсина на 80 – 90% по сравнению с их активностью в исходном сырье уже позволяет отнести белковые продукты к пищевым, не обладающим отрицательном воздействием на организм. Лектины (от лат. – «выбирать») – это гликопротеины растительного происхождения, связывающие один или несколько специфических сахаров. Свое название они получили от избирательной способности вызывать агглютинацию (агрегацию, склеивание) эритроцитов крови, клеток, бактерий. Агглютинация происходит путем взаимодействия лектинов с углеводными компонентами поверхности клеток. Так, лектин соевых белков, например, специфичен к остаткам галактозы и N-ацетилгалактозамина, а агглютинин зародышей пшеницы – к остаткам N-ацетилглюкозамина и N-ацетилнейраминовой кислоты. На долю лектинов в бобовых культурах приходится от 2 до 10% общего белка. Отсутствие высокой активности лектинов, как и ингибиторов ферментов, в белковых продуктах из бобовых является одним из санитарно-гигиенических требований, предусматриваемых сертификацией для использования их в хлебопечении, кондитерской и других отраслях промышленности в целях повышения пищевой ценности изделий. Снижение активности лектинов достигается применением более мягких условий, чем снижение активности ингибиторов ферментов – нагреванием при 80˚С.

34. Характеристика функциональных свойств белков. К наиболее важным функциональным свойствам белков относятся растворимость, водосвязывающая и жиросвязывающая способность, способность стабилизировать дисперсные системы (эмульсии, пены, суспензии), образовывать гели, пленкообразующая способность, адгезионные и реологические свойства (вязкость, эластичность), способность к прядению и текстурированию. Белки с высокими функциональными свойствами хорошо растворяются в воде, образуют прочные гели, стабильные эмульсии и пены; белки с низкими функциональными свойствами не набухают в воде, не способны образовывать вязкие, эластичные массы, гели, не стабилизируют пены и эмульсии. Некоторые известные белки не попадают под указанные выше закономерности. Так, белки пшеничной клейковины, несмотря на низкую растворимость в воде (2–5%), образуют структурные коллоидные системы – гели, которые выдерживают нагревание, замораживание и сушку, а белки из отрубей и тритикале с растворимостью 10–20% обладают высокими жироэмульгирующими и пенообразующими свойствами. Свойства белковых суспензий. При использовании белков в качестве обогатителей, наполнителей (разбавителей), функциональных ингредиентов и аналогов мясных и рыбных изделий большое значение имеют такие свойства белковых суспензий, как ограниченная степень набухания и размер частиц, водо- и жиросвязывающая способность, адгезионные свойства, значение рН и буферная емкость, образование вязко-упругоэластичных масс и гелей. Водосвязывающая способность характеризуется адсорбцией воды при участии гидрофильных остатков аминокислот, жиросвязывающая – адсорбцией жира за счет гидрофобных остатков. Способность белков удерживать жир и воду зависит не только от особенностей аминокислотного состава и структуры, но и от фракционного состава, способа обработки, рН среды, температуры и присутствия углеводов, липидов и других белков. Пены (дисперсные системы с газообразной фазой и жидкой или твердой средой) получают механическим распределением воздуха в растворе белка путем взбивания или за счет вскипания воды, понижения давления, обеспечения химических и микробиологических процессов в белоксодержащих пищевых системах. Гелеобразующие свойства белков характеризуются способностью их коллоидного раствора из свободно диспергированного состояния переходить в связнодисперсное (с образованием систем, обладающих свойствами твердых тел).

35. Превращения белков при технологической обработке пищевых продуктов. В процессе технологической обработки пищевых продуктов существенным изменениям подвергаются белки, влияющие на органолептические свойства, биологическую ценность, структурно-механические и другие показатели качества продуктов.Глубина физико-химических изменений белков зависит от вида продукта, характера внешних воздействий, концентрации белков. К основным изменениям белков пищевых продуктов при различных видах технологической обработки относятся: денатурация и деструкция. Денатурация белков – это нарушение нативной пространственной структуры белковой молекулы под влиянием различных внешних воздействий, сопровождающееся изменением их физико-химических и биологических свойств. При этом нарушаются вторичная и третичная структуры белковой молекулы, а первичная, как правило, сохраняется. Деструкция белков. При нагревании пищевых продуктов выше 100°С происходит разрушение макромолекул денатурированных белков. На первом этапе изменений от белковых молекул могут отщепляться такие летучие продукты, как аммиак, сероводород, диоксид углерода и другие соединения. Накапливаясь в продукте и окружающей среде эти вещества участвуют в образовании вкуса и аромата готовой пищи.

36.Процессы происходящие при денатурации и деструкции белков. Денатурация белков – это нарушение нативной пространственной структуры белковой молекулы под влиянием различных внешних воздействий, сопровождающееся изменением их физико-химических и биологических свойств. При этом нарушаются вторичная и третичная структуры белковой молекулы, а первичная, как правило, сохраняется. Денатурация белков происходит при нагревании и замораживании пищевых продуктов под действием различных излучений, кислот, щелочей, резких механических воздействий и других факторов. При денатурации белков происходят следующие основные изменения: резко снижается растворимость белков; теряется биологическая активность, способность к гидратации и видовая специфичность; улучшается атакуемость протеолитическими ферментами; повышается реакционная способность белков; происходит агрегирование белковых молекул; заряд белковой молекулы равен нулю. Потеря белками биологической активности в результате тепловой денатурации приводит к инактивации ферментов и отмиранию микроорганизмов. В результате потери белками видовой специфичности пищевая ценность продукта не снижается. Рассмотрим наиболее распространенную тепловую денатурацию белковых молекул, сопровождаемую разрушением слабых поперечных связей между полипептидными цепями и ослаблением гидрофобных и других взаимодействий между белковыми цепями. В результате этого изменяется конформация полипептидных цепей в белковой молекуле. Например, фибриллярные белки изменяют свою эластичность, у глобулярных белков развертываются белковые глобулы с последующим свертыванием по новому типу. Прочные (ковалентные) связи белковой молекулы при этом не нарушаются. Глобулярные белки изменяют растворимость, вязкость, осмотические свойства и электрофоретическую подвижность.

Для большинства белков температура денатурации составляет 45 - 60°С. Однако встречаются белки и термостабильные, например, a-лактоглобулин молока и a-амилазы некоторых бактерий.

Деструкция белков. При нагревании пищевых продуктов выше 100°С происходит разрушение макромолекул денатурированных белков. На первом этапе изменений от белковых молекул могут отщепляться такие летучие продукты, как аммиак, сероводород, диоксид углерода и другие соединения. Накапливаясь в продукте и окружающей среде эти вещества участвуют в образовании вкуса и аромата готовой пищи. При температуре от 60°С до 100°С со значительной скоростью протекает взаимодействие белков с восстанавливающими сахарами, сопровождающееся образованием карбонильных соединений и темноокрашенных продуктов – меланоидинов (реакция Майяра). Сущность реакций меланоидинообразования заключается во взаимодействии группы –NH2 аминокислот с гликозидными гидроксилами сахаров (Н2). Сахароаминные реакции являются причиной не только потемнения пищевых продуктов, но и уменьшения в них сухого вещества и потерь незаменимых аминокислот (лизина, треонина). Меланоидины понижают биологическую ценность изделий, так как снижается усвояемость аминокислот из-за того, что сахароаминные комплексы не подвергаются гидролизу ферментами пищеварительного тракта. К тому же количество незаменимых аминокислот уменьшается. Это уменьшение происходит не только за счет взаимодействия их с восстанавливающими сахарами, но и за счет взаимодействия между собой функциональных групп –NH2 и –СООН самого белка. Реакции протекают с образованием внутренних ангидридов, циклических амидов и w–e изопептидных связей.

37. Гетероциклические ароматические амины, их предшественники, ус-я образования, влияние на организм человека. Гетероциклические ароматические амины (ГАА) - это чрезвычайно мощные мутагены. В гепатоцитах человека ГАА трансформируются и становятся фактором, запускающим процесс канцерогенеза. По мнению ряда ученых – самые сильные мутагенные соединения, известные в настоящее время. Они формируются в ходе термической обработки пищевого сырья и полуфабрикатов главным образом животного происхождения, как правило, при температуре выше 150°С. Исследователями доказано мощное мутагенное воздействие указанных соединений на микроорганизмы и выраженный канцерогенный эффект в опытах на животных. Есть основания полагать, что именно ГАА ответственны за определенную часть онкологических заболеваний человека. Как показывают результаты исследований, наиболее важные факторы формирования мутагенных химических веществ – температура и продолжительность процесса кулинарной обработки. Мутагенная активность мясного фарша, жаренного основным способом при 200°С, примерно в 2 раза выше, чем у такого же образца, но жаренного при 150°С. Кроме того, уровень мутагенов существенно увеличивается в случае продолжительность процесса более чем 10 мин. В опытах показано, что при прогревании смеси креатина (всегда имеется в мясе, рыбе), глицина (аланина) и глюкозы при 130°С обнаруживается высокая мутагенная активность. Изъятие хотя бы одного компонента из данной смеси приводит к полной утрате мутагенных свойств. Делается вывод о роли трех главных предшественников (аминокислот, углеводов и креатина) в образовании пищевых мутагенов. Предполагается, что в образовании ГАА участвуют реакции Майера (меланоидинообразования), реакции распада по Стреккеру (с образованием альдегидов и других летучих продуктов); креатин преобразуется в его гетероциклическую форму - креатины, которые далее участвуют в реакциях формирования конденсированных мутагенных гетероциклических аминов.

38. Функции липидов в организме, пищевая ценность отдельных групп липидов, нормы их потребления. Функции липидов.Функции липидов в организме разнообразны (структурная, резервная, транспортная, синтезирующая, терморегулирующая, энергетическая, защитная). Это основной энергетический материал. При сгорании 1 г триацилглицеролов, главного компонента липидов, выделяется 38,9 кДж (9,0 ккал), что в 2 раза больше, чем при сгорании белков или углеводов. Липиды в организме играют роль резервного материала, используемого при ухудшении питания или заболеваниях. Они являются также структурным элементом тканей, в составе клеточных оболочек и внутриклеточных образований. Липиды - источник синтеза стероидных гормонов, которые во многом обеспечивают приспособление организма к различным стрессовым ситуациям. В нервной ткани содержится до 25% липидов, в клеточных мембранах - до 40%. Липопротеины – соединения липидов с белками – выполняют транспортную функцию: они являются переносчиками жирорастворимых витаминов А, D, E и К в организме. Липиды участвуют также в процессах терморегуляции, защищая организм от холода; способствуют закреплению в определенном положении таких внутренних органов, как почки, кишечник, и предохраняют их от смещения при сотрясении. Пищевая ценность отдельных групп липидов. Нормы их потребления. Наиболее важная и распространенная группа простых нейтральных липидов – ацилглицеринов. Ацилглицерины – (или глицериды) – это сложные эфиры глицерина и высших карбоновых кислот. Они составляют основную массу липидов (иногда до 95%) и, по существу, именно их называют жирами или маслами. В состав жиров диацилглирерины и моноацилглицерины. Триацилглицерины (ТАГ), молекулы которых содержат одинаковые остатки жирных кислот, называются простыми, в противном случае - смешанными. Природные жиры и масла содержат, главным образом, смешанные триацилглицерины. Важнейшая составная часть жиров – жирные кислоты, насыщенные и ненасыщенные. Жирные кислоты в основном и определяют свойства жира. Чем больше в жирах полиненасыщенных жирных кислот, тем они более биологически активны. Самые распространенные жирные кислоты – пальмитиновая, олеиновая, линолевая. Насыщенные жирные кислоты содержатся в коровьем масле (масляная, капрновая), животном жире (пальмитиновая, стеариновая, миристиновая), рыбьем жире и земляных орехах (арахиновая), рапсовом масле (бегеновая). Насыщенные жирные кислотыиспользуются в основном как энергетический материал, содержатся в наибольших количествах в животных жирах, что определяет высокую температуру плавления этих жиров и их твердое состояние. Они содержатся в мясе животных и субпродуктах. Ненасыщенные жирные кислоты подразделяются на мононенасыщенные ( содержат одну ненасыщенную водородом связь) и полиненасыщенные (несколко связей). Простые ненасыщенные жирные кислоты содержатся в рыбьем жире (эруковая, гадолеиновая), масле, жире, орехах (олеиновая), а также в молочном жире (пальмитолеиновая). Полиненасыщенные жирные кислоты содержатся в масле семян, рыбьем жире (линолевая, линоленовая, арахидоновая, клупонодоновая). Полиненасыщенные жирные кислоты (ПНЖК ): линолевая, линоленовая – относятся к незаменимым формам питания, так как в организме они не синтезируются и потому должны поступать с пищей. Эти кислоты по своим биологическим свойствам относятся к жизненно необходимым веществам и называются «Витамин F». Фосфолипиды – основной компонент биомембран клеточных структур, они играют существенную роль в проницаемости клеточных оболочек и внутриклеточном обмене. Наиболее важны из фосфолипидов - фосфатидилхолин, или лецитин, проявляет липотропное действие, препятствуя ожирению печени и лучшему усвоению жиров. Недостаток фосфатидов в рационе приводит к накоплению жира в печени, к ее ожирению, а за тем и к циррозу. Суточная потребность в фосфатидах здорового взрослого человека – 5-10 г. Стеарины – алициклические вещества, входящие в группу стероидов, овычно они представляют собой кристаллические одноатомные спирты (стеролы) или их эфиры (стериды). Различают зоостерины, выделяемые из животных объектов, фитостерины (из ратсений), микостерины, выделяемые из грибов. Рекомендуемое содержание жиров в рационе человека – 90-100 г в сутки, при этом 1/3 их должны составлять растительные масла, 2/3 – животные. По данным ВОЗ, нижний предел безопасного потребления жиров составляет для взрослых мужчин и женщин 25-30 г/сутки.

39. Процессы переработки жиров и масел. Гидролиз триацилглицеринов:

Под влиянием щелочей, кислот, фермента липазы триацилглицерины гидролизуются с образованием ди-, затем моноацилглицеринов и, в конечном счете, жирных кислот и глицерина.

Результаты гидролиза выражаются схемой:

В присутствии кислотных катализаторов (сульфокислоты, H3PO4) процесс ведут при 100C в избытке воды. В присутствии катализаторов расщепление проводят при температуре 220-225С под давлением 2-2.5 МПа («безреактивное» расщепление). Гидролиз концентрированными водными растворами гидроксида натрия (омыление) является основой процесса получения («варки») мыла. На скорость гидролиза ацилглицерина влияют строение и положение ацилов, температура, катализаторы. С ростом длины углеродной цепи, увеличением ненасыщенности (при той же длине углеродной цепи) ацилов скорость гидролиза снижается.  Гидролиз триацилглиреринов широко применяется в технике для получения жирных кислот, глицерина, моно- и диацилглицеринов.ь Свойства и преврашения глицерофосфолипидов. В молекуле фосфолипидов имеются заместители двух типов: гидрофильные и гидрофобные. В качестве гидрофильных (полярных) группировок выступают остатки фосфорной кислоты и азотистого основания («голова»), а гидрофобных (непо


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.032 с.