Натриево – силикатные стекла — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Натриево – силикатные стекла

2020-12-07 631
Натриево – силикатные стекла 0.00 из 5.00 0 оценок
Заказать работу

Содержание

Свойства стекол

Производство стекла

Типы стекол

Кварцевое стекло

Натриево – силикатные стекла

Известковые стекла

Свинцовые стекла

Боросиликатные стекла

Варка стекла

Переработка в изделия

             5.1 Изделия из стекла и область их применения

Последние достижения в области производства стекла

Плоское стекло

Стеновые стеклоблоки

Стекловолокно

Специальное кварцевое стекло

Пеностекло

Металлизация

Проводящие покрытия

Электротехнические изделия

Светочувствительные стекла

Стеклокерамика

Ситаллы

Технические ситаллы

Строительные ситаллы

Стекло и ситаллы

Любой материал, который при охлаждении переходит из жидкого состояния в твердое без кристаллизации, правильно называть стеклом независимо от его химического состава. Под это определение подпадают как органические, так и неорганические материалы. Однако стекла, используемые в широком обиходе, почти всегда изготавливают из неорганических оксидов.

 

Свойства стекол

Область применения стекол определяется их свойствами. Так, для листовых строительных стекол важны прочность на сжатие и растяжение, термические свойства, химическая устойчивость, светопрозрачность. Ниже рассмотрены важнейшие свойства стекла, ха­рактеризующие его в твердом состоянии.

Плотность.

Плотностью называется отношение массы тела к его объему. Определяется она по формуле р = т / V, где р — плот­ность, г/см3; т — масса, г; V — объем, см3.

Стекло имеет плотность от 2,2 до 7,5 г/см3. Она определяется химическим составом. В состав тяжелых стекол (флинтов) входит много свинца, в состав легких — окислы элементов с малой атомной массой — лития, бериллия, бора. Большинство промышленных строительных стекол (оконное, полированное, профильное) имеет плотность 2,5—2,7 г/см3 в частности оконное стекло 2,55 г/см3. Плотность стекол в некоторой степени зависит и от температуры. Так, с повышением температуры плотность стекол уменьшается.

Прочность.

Прочностью называется способность материала со­противляться внутренним напряжениям, возникающим в результа­те действия внешних нагрузок. Прочность характеризуется преде­лом прочности. В зависимости от направления действия нагрузки определяют предел прочности при сжатии, растяжении, изгибе и т.д.

Предел прочности стекол при сжатии R (кгс/мм2, Па) измеряют величиной разрушающей силы F(кгс), действующей на попереч­ное сечение S (мм2) образца перпендикулярно действующей силе: R = F / S.

Предел прочности на сжатие для различных видов стекла ко­леблется от 50 до 200 кгс/мм2, например прочность оконного стекла 90—100 кгс/мм2. Для сравнения можно указать, что прочность на сжатие чугуна 60—120, стали 200 кгс/мм2.

На прочность стекла оказывает влияние его химический состав. Так, окислы СаО и В2О3 значительно повышают прочность, РЬО и А12О3 в меньшей степени, МgО, ZnО и Fе2О3 почти не изменяют ее.

Предел прочности при растяжении определяют по формуле R = P / S, где R — предел прочности при растяжении, кгс/мм2 (Па); P — средняя величина разрушающего усилия, кгс; S — площадь шейки образца в момент разрыва, мм2.

Из механических свойств стекол прочность на растяжение явля­ется одним из важнейших. Объясняется это тем, что стекло работа­ет на растяжение хуже, чем на сжатие. Обычно прочность стекла на растяжение составляет 3,5—10 кгс/мм2, т. е. в 15—20 раз мень­ше, чем на сжатие.

Прочность стекла на растяжение зависит от состояния поверх­ности стекла. Наличие на ней каких-либо повреждений (трещин, царапин) снижает прочность стекла в 4—5 раз. Поэтому для сохра­нения заданной прочности стекла необходимо оберегать его поверх­ность от повреждений, например   покрывать кремний органическими пленками. Химический состав влияет на прочность стекла при растяжении примерно так же, как и на прочность при сжатии.

Твердость. Твердость — это способность материала оказывать сопротивление проникновению в него более твердого материала. От твердости зависит продолжительность всех видов механической обработки (в производстве полированного автомобильного и техни­ческого стекла).

К твердым сортам относят боросиликатные малощелочные стек­ла с содержанием В2О3 до 10—12%, твердость которых по шкале Мооса равна 7. Стекла с большим содержанием щелочных окислов имеют меньшую твердость. Наиболее мягкие — многосвинцовые силикатные стекла, твердость которых по шкале Мооса равна 5—6.

Хрупкость.

Хрупкость стекол определяется способностью про­тивостоять удару. Большая хрупкость стекол ограничивает их при­менение. В лабораторных условиях вместо хрупкости определяют микрохрупкость стекла, которая измеряется числом микротрещнн, образовавшихся на поверхности стекла при вдавливании в него ал­мазной пирамидки.

На хрупкость стекол влияют однородность, конфигурация и толщина изделий: чем меньше посторонних включений в стекле, чем более оно однородно, тем выше его хрупкость. Хрупкость стекол практически не зависит от состава. При увеличении в со­ставе стекол В2О3, SiO2, А12Оз, ZrО2, МgО хрупкость незначи­тельно понижается.

Теплоемкость.

Удельная теплоемкость характеризуется количе­ством теплоты, необходимым для нагревания 1 г вещества на 1°С. Измеряется она в кал/г-град, ккал/кг-град (Дж/кг-К).   

Стекла имеют удельную теплоемкость от 0,08 до 0,25 кал/г-град в зависимости от химического состава. Окислы тяжелых элементов РЬО, ВаО, как правило, понижают теплоемкость стекол, а окислы легких элементов типа Li2О повышают ее.

С повышением температуры теплоемкость стекла увеличивает­ся, причем до температуры начала размягчения она увеличивается незначительно, а при пластичном состоянии начинает возрастать быстрее. Увеличение теплоемкости стекла с повышением темпера­туры происходит и в расплавленно-жидком состоянии.

Теплопроводность.

Теплопроводность веществ измеряется коли­чеством тепла, переносимым через единицу площади поперечного сечения образца в единицу времени при разности температур, рав­ной единице:

Q = ,

где Q — переносимое количество тепла, кал;   — коэффициент теплопроводности, кал/см-с-град или ккал/м-ч-град (вт/м-град); S — площадь, через которую происходит теплопередача, см2; а — толщина образца, см; I — разность температур, ° С;  - время, с. Стекло плохо проводит тепло. Коэффициент теплопроводности, стекол 0,0017—0,032 кал/см-с-град, в частности для оконных стекол он равен 0,0023. Наибольший коэффициент теплопроводности имеет кварцевое стекло, поэтому при замене SiO2 любыми другими окислами теплопроводность стекла понижается.

С повышением температуры теплопроводность стекол увеличи­вается. Так, при нагревании стекла до его температуры начала размягчения величина ее повышается примерно в два раза.

Термическая устойчивость.

Термической устойчивостью (термо­стойкостью) называют способность стекла выдерживать, не разру­шаясь, резкие изменения температуры. Термическая устойчивость играет существенную роль для стекол, которые используются в ус­ловиях резкой смены температуры.

Наибольшей термостойкостью обладает кварцевое стекло, оно выдерживает резкий перепад температур до 1000° С. Термостой­кость оконных стекол составляет 80—90° С.

Термостойкость стекла зависит от упругости, прочности на ра­стяжение, теплопроводности, теплоемкости и главным образом от коэффициента термического расширения: чем выше коэффициент термического расширения стекла, тем ниже его термостойкость, и, наоборот, чем меньше коэффициент термического расширения, тем больше термостойкость.

Когда стекло охлаждается, его наружные слои стремятся умень­шиться в объеме. Этому препятствуют внутренние слои, остываю­щие медленно из-за малой теплопроводности стекла. Образующие­ся напряжения между наружными и внутренними слоями приводят к разрушению стекла. Те же процессы протекают и при резком на­гревании стекла. Разница заключается в том, что при охлаждении в стекле образуются напряжения растяжения, а при нагрева­нии — напряжения сжатия. Следовательно, чем выше коэффи­циент термического расширения стекла, тем больше величина обра­зующихся в стекле напряжений и тем меньше его термостойкость. Из этого также вытекает, что стекло лучше переносит резкое нагре­вание, чем охлаждение, так как при нагревании в нем образуются напряжения сжатия, а при охлаждении — растяжения. А стекло работает на сжатие в 15—20 раз лучше, чем на растяжение.

Химический состав стекла во многом определяет его термостой­кость: окислы, повышающие коэффициент термического расшире­ния стекла, понижают его термостойкость, и наоборот.

Оптические свойства.

Под оптическими свойствами стекла под­разумевают его светопрозрачность, светопоглощение, отражение и преломление света.

При падении пучка света на поверхность прозрачного тела часть света отражается, а часть проходит через него, преломляясь. Но если сложить свет, отраженный и преломленный, то не получится количества света, которое падает на стекло, — небольшая часть света поглощается стеклом.. Поглощение света обусловлено при­сутствием в стекле соединений-красителей, вызывающих избира­тельное поглощение, т. е. поглощение лучей только с определенной длиной волны. Так, из-за наличия в стекле, в том числе и оконном, соединений железа оно имеет зеленоватый оттенок.

Светопоглощение понижает общую светопрозрачность стекла (светопрозрачность оконного стекла составляет примерно 88%), поэтому для получения стекол с высокой степенью прозрачности необходимо свести к минимуму содержание нежелательных приме­сей в сырьевых материалах.

Химическая стойкость.

Химической стойкостью называется способность стекла противостоять разрушающему действию воды, растворов солей, влаги и газов атмосферы.

Стойкость стекла к действию щелочей называется щелочестойкостью, к действию кислот — кислотостойкостью.

Химическую стойкость стекла определяют по разности массы образца до и после испытания. Для испытания приготовляют порошок из стекла или массивный образец стекла, взвешивают его и затем кипятят в агрессивной среде, чаще всего в растворах NaОН, Na2СОз, НС1 и дистиллированной воде. После опыта образец высу­шивают и взвешивают на аналитических весах. "Потеря в массе стекла и характеризует его химическую стойкость.

Химическую стойкость определяют также титрованием кислотой (НС1) раствора, в котором было обработано испытуемое стекло. В этом случае химическая стойкость характеризуется количеством кислоты, затраченной на титрование: чем больше израсходовано кислоты на титрование, тем меньше химическая стойкость стекла.

Щелочестойкость оконного стекла определяют по потере массы с 1 дм2 пластины стекла при обработке ее в кипящем однонормальном растворе углекислого натрия в течение 3 ч. Потеря при этом не должна превышать 38 мг с 1 дм2 поверхности.

В зависимости от способности стекол противостоять разрушаю­щему действию воды и других агрессивных растворов их подраз­деляют на гидролитические классы, которые определяются количе­ством НС1, пошедшим на титрование.

 

Гидролитические классы (расход НС1, мл):

            I — не изменяемые водой стекла                0—0,32

           II — устойчивые стекла                                 0,32—0,65

          III — твердые аппаратные стекла                0,65—2,8

          IV — мягкие аппаратные стекла                    2,8—6,5

           V — неудовлетворительные стекла           6,5 и больше

Наибольшую химическую стойкость имеет кварцевое стекло, оно относится к I гидролитическому классу, химико-лабораторные стекла, как правило, ко II. Большинство промышленных стекол принадлежит к самому обширному — III гидролитическому классу, а наиболее устойчивые из них — оконное и полированное — к пер­вой половине этого класса.              

Химическая стойкость силикатных стекол в основном зависит от химического состава и определяется содержанием в них кремнезе­ма. SiO2 значительно увеличивает химическую стойкость стекла, Щелочные же окислы, как правило, понижают ее. Другие компо­ненты стекла ведут себя по-разному по отношению к различным реагентам. Поэтому при подборе химических составов стекол руко­водствуются тем, в каких условиях они будут использоваться.

 

Производство стекла

Сырьевые материалы.

Смесь, или шихта, из которой приготавливается стекло, содержит некоторые главные материалы: кремнезем (песок) почти всегда; соду (оксид натрия) и известь (оксид кальция) обычно; часто поташ, оксид свинца, борный ангидрид и другие соединения. Шихта также содержит стеклянные осколки, остающиеся от предыдущей варки, и, в зависимости от обстоятельств, окислители, обесцвечиватели и красители либо глушители. После того как эти материалы тщательно перемешаны друг с другом в требуемых соотношениях, расплавлены при высокой температуре, а расплав охлажден достаточно быстро, чтобы воспрепятствовать образованию кристаллического вещества, получается целевой материал — стекло.

Хотя песок внешне не похож на стекло, большинство распространенных стекол содержат от 60 до 80 мас.% песка, и этот материал как бы образует остов, относительно которого протекает процесс стеклообразования. Стеклообразующий песок — это кварц, наиболее распространенная форма кремнезема. Он подобен песку с морского пляжа, из которого, однако, удалено большинство посторонних примесей. Оксид натрия Na2O обычно вводится в шихту в виде кальцинированной соды (карбоната натрия), однако иногда используется бикарбонат или нитрат натрия. Все эти соединения натрия разлагаются до Na2O при высоких температурах. Калий применяется в форме карбоната или нитрата. Известь добавляется в виде карбоната кальция (известняка, кальцита, осажденной извести) либо иногда в виде негашеной (CaO) или гашеной (Ca(OH)2) извести. Главные источники монооксида бора для производства стекла — бура и борный ангидрид. Оксид свинца обычно вводится в шихту в виде свинцового сурика или свинцового глета.

Сырьевые материалы подразделяют на основные (кремнеземные, щелочные, стекольный бой), которые придают стеклу основные физико-хи­мические свойства, и вспомогательные (осветлители, обесцвечиватели, красители, глушители), способствующие улучшению качества стекломас­сы, ускорению варки, окрашиванию или обесцвечиванию стекла.

Огнеупорные материалы.

Огнеупорные материалы (огнеупоры) применяют для кладки стекловаренных печей. Эти материалы выпускают в виде штучных изде­лий (кирпичей), порошков, растворов.

Топливо.

Топливо для отопления стекловаренных печей и других агрега­тов используют твердое (уголь, торф, сланец), жидкое (мазуг, керосин, бензин, дизельное топливо, соляровое масло), газообразное (природный газ, попутный нефтепромысловый, генераторный, коксовый).

Конструкционные материалы.

Конструкционные материалы применяют для изготовления форм, приспособлений, различных установок. В качестве конструкцион­ных материалов используют металлы (чугун, сталь, медь, алюминий, брон­зу), пластмассы (полиэтилен, поливинилхлорид, винипласт, полистирол, фторопласт, текстолит).

Абразивные материалы.

Абразивные материалы (кварц, корунд, алмаз, электрокорунд, карбид кремния, синтетические алмазы, карбид бора) служат для шли­фования и полирования стекла.

Смазочные материалы.

Смазочные материалы (минеральные масла и консистентные смазки) применяют для смазывания стеклоформующих машин, форм, конвейеров.

Типы стекол

3.1  Кварцевое стекло

Стекло, состоящее из одного только кремнезема, правильно называть плавленым кварцем или кварцевым стеклом. Это простейшее стекло по своим химическим и физическим свойствам, и оно обладает многими необходимыми параметрами: не подвергается деформированию при температурах вплоть до 1000° С; его коэффициент теплового расширения очень низок, и поэтому оно обладает стойкостью к термоудару при резком изменении температуры; его объемное и поверхностное удельные электрические сопротивления весьма высоки; оно отлично пропускает как видимое, так и ультрафиолетовое излучение. К сожалению, кварцевое стекло с большим трудом плавится и перерабатывается в изделия. Высокая стоимость кварцевого стекла ограничивает его применение изделиями специального назначения, такими, как химико-лабораторная посуда, ртутные лампы и компоненты оптических систем, работающие при высоких температурах.

 

Натриево-силикатные стекла

Натриево-силикатные стекла получают сплавлением кремнезема (оксида кремния) и соды (оксида натрия). Смесь 1 части оксида натрия (Na2O) с 3 частями оксида кремния (SiO2) плавится при температуре, на ~900° С более низкой, чем чистый кремнезем; оксид натрия действует как сильный флюс. К сожалению, такие стекла растворяются в воде, и хотя они чрезвычайно важны для промышленного применения, из них нельзя изготавливать большинство изделий.

 

Известковые стекла

Древние стеклоделы обнаружили, что водорастворимость натриево-силикатных стекол можно устранить добавлением извести. Анализы древних стекол показывают поразительное сходство их химического состава с составом современных стекол, хотя современные стеклоделы, в отличие от древних, знают также, что добавление небольших количеств других оксидов, например оксида магния MgO, оксида алюминия Al2O3, оксида бария BaO, дополнительно повышает качество стекла. Если главные ингредиенты шихты — оксиды Na2O, CaO и SiO2, то получаемые стекла называются натриево-известково-силикатными, натриево-известковыми или просто известковыми стеклами независимо от присутствия других составляющих. С небольшими изменениями в составе эти стекла широко используются для изготовления листового и зеркального стекла, стеклотары, колб электроламп и многих других изделий. Эти стекла относительно легко плавятся и перерабатываются в изделия, а сырьевые материалы для них недороги. Вероятно, 90% производимого сегодня стекла является известковым.

 

Свинцовые стекла

Свинцовые стекла изготавливают сплавлением оксида свинца PbO с кремнеземом, соединением натрия или калия (содой или поташем) и малыми добавками других оксидов. Эти свинцово-натриево(или калиево)-силикатные стекла дороже известковых стекол, однако они легче плавятся и проще в изготовлении. Это позволяет использовать высокие концентрации PbO и низкие — щелочного металла без ущерба для легкоплавкости. Такой состав поднимает диэлектрические свойства материала до такого уровня, что делает его одним из лучших изоляторов для использования в радиоприемниках и телевизионных трубках, в качестве изолирующих элементов электроламп и конденсаторов. Высокое содержание PbO дает высокие значения показателя преломления и дисперсии — двух параметров, весьма важных в некоторых оптических приложениях. Те же самые характеристики придают свинцовым стеклам сверкание и блеск, украшающие самые утонченные изделия столовой посуды и произведения искусства. Большинство стекол, называемых хрусталем, являются свинцовыми.

 

Боросиликатные стекла

Стекла с высоким содержанием SiO2, низким — щелочного металла и значительным - оксида бора B2O3 называются боросиликатными. Борный ангидрид действует как флюс для кремнезема, так что содержание щелочного металла в шихте может быть резко уменьшено без чрезмерного повышения температуры расплавления. В 1915 фирма «Корнинг гласс уоркс» начала производить первые боросиликатные стекла под торговым названием «пирекс». В зависимости от конкретного состава стойкость к термоудару таких стекол в 2-5 раз выше, чем у известковых или свинцовых; они обычно намного превосходят другие стекла по химической стойкости и имеют свойства, полезные для применения в электротехнике. Такое сочетание свойств сделало возможным производство новых стеклянных изделий, в том числе промышленных труб, рабочих колес центробежных насосов и домашней кухонной посуды. Зеркало крупнейшего телескопа в мире на г. Паломар в Калифорнии изготовлено из стекла сорта «пирекс».

 

Другие стекла. Существуют много других типов стекол специального назначения. Среди них — алюмосиликатные, фосфатные и боратные стекла. Производятся также стекла с разнообразной окраской для изготовления линз, светофильтров, осветительного оборудования, косметической тары и домашней утвари.

 

Примерные химические составы промышленных стекол

Таблица 3.1

Стекло SiO2 Al2O3 CaO MgO Na2O K2O B2O3 BaO F PbO
Оконное 71,6 1,5 7,8 4,0 15,1 - - - - -
Полированное 73,2 1,3 7,8 3,8 13,9 - - - - -
Тарное 73,7 0,2 9,1 1,75 15,2 - - - - -
Сортовое 74,5 0,5 6,5 2,0 14,0 2,0 - - - -
Химико-лабораторное 68,7 3,8 8,4 0,8 9,7 6,1 2,5 - - -
Электровакуумное 71,9 - 5,5 3,5 16,1 1,0 - 2,0 - -
Оптическое 53,5 8,8 - - - 16,2 16,2 ZnO 5,3 -
Хрустальное 57,5 0,5 - - - 15,5 1,0 1,0 - 24

Варка стекла

Стекло варится путем выдерживания смеси сырьевых материалов при высоких температурах (от 1200 до 1600° С) в течение продолжительного времени — от 12 до 96 ч. Такой режим обеспечивает протекание необходимых химических реакций, в результате чего сырьевая смесь приобретает свойства стекла.

В древние времена варка производилась в глиняных горшочках глубиной и диаметром 5-7 см. В настоящее время применяются шамотные горшки гораздо больших размеров, вмещающие от 200 до 1400 кг шихты, для производства оптического, художественного и других видов стекла специального состава. В одной печи могут выдерживаться от 6 до 20 горшков. Большие массы стекла варятся в ванных печах непрерывного действия. Постоянный уровень расплавленного стекла в ванне поддерживается путем непрерывной подачи шихты на одном из концов установки и извлечения готового продукта с той же скоростью из другого конца; в таком режиме некоторые стекловаренные печи работали в течение пяти лет, прежде чем возникала необходимость в ремонте. Крупные печи, иногда вмещающие несколько сот тонн расплавленного стекла, приспосабливаются к интенсивному механическому производству. Как горшковые, так и ванные печи обычно нагреваются сжиганием природного газа или мазута.

 

Рис. 4.1. Ванная стекловаренная печь:

1 – бассейн; 2 – загрузочный карман; 3 – здание цеха; 4 – главный свод; 1 – бассейн; 2 – загрузочный карман; 3 – здание цеха; 4 – главный свод; 5 – колонны обвязки печи; 6 – машина вертикального вытягивания; 7 – отломщик рамного типа; 8 – роликовый конвейер; 9 – горелки; 10 – регенераторы; 11 – воздушный шибер; 12 – боров для отвода отходящих газов; 13 – котёл – утилизатор; 14 – дымовая труба.

 

 

Переработка в изделия

В отношении переработки в изделия стекло отличается от большинства других материалов двумя особенностями. Во-первых, оно должно перерабатываться, будучи чрезвычайно горячим и полужидким. Во-вторых, операции формования должны выполняться за короткие периоды, длящиеся от нескольких секунд до, самое большее, нескольких минут, — за это время стекло охлаждается до состояния твердого тела. При необходимости дальнейшей обработки стекло вновь должно быть нагрето. В расплавленном состоянии стекло может быть вытянуто в длинные нити, обладающие гибкостью при высокой температуре, извлечено из общей массы погруженным в него инструментом в виде небольшого сгустка, подцеплено концом стеклодувной трубки либо разлито в формы для получения отливок или прессовок. Поскольку стекло легко сплавляется с металлом, отдельные части сложного изделия соединяются друг с другом после повторного нагрева, благодаря которому также обеспечивается чистота соединяемых поверхностей. Вращение заготовки с постоянной скоростью при обработке придает изделию осесимметричную форму. Готовые стеклянные изделия подвергаются процессу отжига со стадией медленного охлаждения для релаксации напряжений. За все время производства стекла были созданы четыре главных метода его обработки: выдувание, прессование (рис. 5), прокатка и литье. Первые три метода используются как в мелкосерийном ручном, так и в непрерывном машинном производстве. Литье, однако, трудно приспособить к крупносерийному производству.

 

 

Рис. 5.1. Технологическая схема прессования:

а - г - последовательность операции; 1 – стекло; 2 – пресс – форма; 3 – кольцо; 4 – пуансон; 5 – изделие; 6 – поддон.

 

 

Рис. 5.2. Прокатная машина НП – 3001:

1 – тележка; 2 – система смазывания; 3 – система охлаждения валков; 4,6 – прокатные валики; 5 – приёмный лоток; 7 – механизм подачи сетки; 8 – станина; 9 – приёмные валики; 10 – механизм перемещения машины.

 

Плоское стекло

В течение и сразу после Первой мировой войны были разработаны новые и полностью непрерывные методы изготовления как оконного, так и зеркального стекла. В 1928 было создано многослойное безосколочное стекло для автомобилей. Вскоре после этого было освоено производство закаленного плоского стекла путем термообработки (закалки с высоким отпуском) твердых полированных листов. Этот процесс повышает прочность в несколько раз и дает продукт с исключительно высокими гибкостью и стойкостью к истиранию и всем видам механического и теплового удара. Когда такое стекло разбивается, оно распадается не на длинные, острые осколки, как обычное стекло, а на маленькие округлые кусочки, которые относительно безвредны. Отпуск оказывается эффективным при упрочнении не только плоского стекла, но и кухонной посуды, мерного стекла, линз защитных очков и круглых колб светильников. Стеклопакеты, заменяющие вставные оконные переплеты, — сравнительно новая разработка конструкции с плоским стеклом. Они состоят из двух или более листов стекла, герметично соединенных по периметру рамкой. Пространство между листами заполняют очищенным и осушенным воздухом. По сравнению с одинарным остеклением стеклопакеты уменьшают теплопотери почти на 50% и надолго избавляют от проблем, связанных с применением наружного оконного переплета, проникновением пыли и конденсацией влаги.

 

Стеновые стеклоблоки

Производство стеновых стеклоблоков и стекловолокна началось в 1931. Трудно вообразить два других вида стеклянных изделий, столь непохожих друг на друга. Стеновые стеклоблоки массивны и изготовляются сваркой двух прессованных полублоков с образованием герметической полости между ними. Такие элементы монтируются при строительстве с использованием обычных инструментов и материалов. Получаемые из них «стены дневного света» пропускают большую часть падающего на них солнечного излучения, но уменьшают его яркость, обеспечивают хорошую теплоизоляцию и практически исключают конденсацию влаги. Эти полезные свойства обусловили широкое использование стеновых стеклоблоков как элементов строительных конструкций.

 

Стекловолокно

В отличие от бытового стекла стекловолокно обычно изготавливается в форме нитей диаметром меньше 1 мкм. Поскольку каждое волокно представляет собой, по существу, сплошной стеклянный стержень, в объеме оно обладает всеми свойствами стекла. Стекловолокно термостойко и негорюче. Оно не поглощает влаги, не гниет и не подвержено химическому разложению. Оно атмосферо-, кислото-, масло- и коррозионностойко, а также не проводит электричества. Из стекловолокна можно изготавливать нити, ленты, оплетки и корд. Из несколько более толстых, коротких волокон получают упругую ватоподобную массу, называемую стекловатой. В такой форме стекловолокно — отличный теплоизолятор. Различные виды стекловолокна в сочетании с асбестом, слюдой, пластмассами и силиконами дают превосходные композиционные материалы. Действительно, материалы, состоящие из параллельных стеклянных нитей, внедренных в сложный полиэфир или другую матрицу, по прочности на единицу массы могут быть намного прочнее обычных конструкционных материалов, включая сталь, алюминий, магний и титан. Армированные стекловолокном пластмассы этого типа теперь широко используются для изготовления деталей самолетов и ракет, труб, резервуаров, корпусов лодок и строительных панелей. Промышленность стекловолокон выросла с удивительной быстротой ввиду широкого применения этого вида стекла в композиционных материалах.

 

Пеностекло

Пеностекло — еще один продукт изобретательности стеклоделов — по структуре похоже на хлеб и может распиливаться на куски нужного размера. Разработанное в 1940, это стекло так мало весит, что не тонет в воде, и все же является жестким, не горит и не выделяет запахов. Такая аномалия свойств создается после смешения тонко измельченных кокса и стекла и нагрева смеси до высокой температуры. Смесь мучнистого вида расплавляется, превращаясь в черную пену, которая заполняет объем формы и потом застывает. В результате получается твердый ячеистый материал с сотнями тысяч заполненных воздухом изолированных ячеек на 1 дм3. После снятия форм блоки пеностекла разрезаются до нужных размеров. Этот замечательный продукт весит примерно столько же, сколько весит пробка, и во время Второй мировой войны использовался в качестве заменителя пробки, а также пробковой древесины, пористой резины и капка. Как и пробка, пеностекло — отличный изолятор. Однако в отличие от пробки на него не влияют сырость и конденсация влаги, так что оно очень подходит для обкладки холодильных камер и бытовых холодильников. Пеностекло в равной мере успешно может применяться и для высокотемпературной теплоизоляции вплоть до 425° С, поскольку оно не только не горит, но и заглушает огонь. Новый сорт пеностекла содержит 99% кремнезема и может использоваться при температуре до 1200° С.

 

Металлизация

На поверхность стекла можно наплавить тонкий слой металла; при этом соединение получается настолько прочным, что к металлическому покрытию можно припаять довольно массивные металлические детали. Этот метод широко применяется в радио- и электротехнической промышленности.

 

Проводящие покрытия

Был открыт целый ряд необычных применений стекла в связи с тем, что ему можно придать свойство поверхностной проводимости. Это достигается напылением на поверхность стеклянного изделия тонкого, прозрачного, почти невидимого слоя оксида металла. Такое покрытие весьма долговечно и имеет поверхностное сопротивление в пределах от 10 до 100 Ом/см2. При обычных температурах можно использовать известковое стекло,  а при высоких — боросиликатное. Изготовленные из такого стекла панели лучистого нагрева могут работать при температурах до 350° С. Подобные панели — хороший источник энергии длинноволнового инфракрасного излучения, которое большинство веществ и сред поглощает с эффективностью 90% и более. Таким способом изготавливаются настольные стеклянные излучатели и вспомогательные нагреватели для помещений. Проводящие покрытия, нанесенные на ветровые стекла самолетов, сохраняют их теплыми и свободными от льда.

 

Электротехнические изделия

Стеклянные колбы широко используются в качестве оболочек для ламп накаливания и электронно-лучевых трубок. Проволочные резисторы, трансформаторы, конденсаторы, реле и переключатели могут заключаться в оболочки из отпущенного стекла с выводами через стеклянные изоляторы. Крупные проходные изоляторы массой до 22 кг, рассчитанные на сильные токи и высокие напряжения, изготавливаются путем центробежной отливки стекла вокруг металлических втулок. С применением стекла изготавливаются конденсаторы как постоянной, так и переменной емкости. В конденсаторах постоянной емкости используется листовое стекло толщиной до 0,025 мм. Конденсатор переменной емкости состоит из изготовленной с жестким допуском стеклянной трубки, часть внешней поверхности которой металлизируется для образования одной обкладки. Внутрь трубки вставляется стержень из латуни или инвара, образующий вторую обкладку. Стеклянные трубки или стержни с нанесенной на них углеродной, металлической или металлооксидной пленкой используются в качестве резисторов.

 

Светочувствительные стекла

В 1947 было обнаружено, что стекла некоторых составов при воздействии ультрафиолетового излучения образуют скрытое изображение, которое может быть проявлено путем нагрева стекла чуть выше температуры отжига. Скажем, на стекло можно наложить фотографический негатив и облучить его ультрафиолетом, а потом нагреть стекло; в результате в объеме стекла появится воспроизведенное в цвете изображение. Цвет изображения зависит от вида светочувствительного металла, введенного в шихту. Один из составов дает опаловое стекло такой природы, что разбавленная фтористоводородная кислота протравливает облученную часть раз в пятнадцать быстрее, чем не


Поделиться с друзьями:

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.085 с.