Исследование простейших электрических цепей переменного тока — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Исследование простейших электрических цепей переменного тока

2020-12-06 195
Исследование простейших электрических цепей переменного тока 0.00 из 5.00 0 оценок
Заказать работу

 

Цель работы: изучение свойств простейших электрических цепей, содержащих резисторы, конденсаторы, катушки индуктивности; отработка практических навыков и экспериментальная проверка теоретических положений о распределении напряжений и фазовых сдвигов в RC -, RL -цепях; измерение амплитудно-частотных и фазо-частотных характеристик.

 

 

Общие сведения

 

Сопротивление R в цепи переменного тока носит название активного сопротивления. Ток и напряжение на активном сопротивлении совпадают по фазе. Переменный ток, протекающий через резистор, изменяется при изменении напряжения или сопротивления цепи. Ток в цепи может быть определен с помощью закона Ома.

При большинстве измерений используются эффективные или действующие значения. Эффективное значение переменного тока – это такое значение постоянного тока, при котором выделяется такое же количество тепла. Эффективное значение можно определить, вычислив среднеквадратичное значение, поэтому эффективное значение часто называют среднеквадратичным. Вычисление среднеквадратичного значения показывает, что эффективное значение синусоиды равно 0,707 от пикового значения. Когда указывается значение переменного тока или напряжения без каких-либо уточнений, предполагается, что это эффективное значение. Большинство измерительных приборов проградуировано в эффективных значениях тока или напряжения. Эффективное значение может рассматриваться как эквивалентное значение постоянного тока. В чисто резистивной цепи закон Ома применяется к эффективным значениям переменного тока так же, как и к значениям постоянного тока.

Емкостное реактивное сопротивление – это противодействие, которое конденсатор оказывает переменному току. Емкостное сопротивление может быть вычислено по формуле

ХС = 1 / (2p f С),

где p =3,1415926; f – частота, Гц; С – емкость, Ф.

Емкостное сопротивление является функцией частоты приложенного переменного напряжения и емкости. Увеличение частоты уменьшает емкостное сопротивление, что приводит к возрастанию тока.

Противодействие, которое оказывает катушка индуктивности току в цепи переменного тока, называется индуктивным реактивным сопротивлением. Его величина зависит от индуктивности и частоты приложенного напряжения. Индуктивное сопротивление определяется формулой

Х L = 2p f L,

где L – индуктивность, Гн.

Заметим, что индуктивное сопротивление увеличивается при увеличении частоты.

Емкостное реактивное сопротивление служит причиной того, что ток опережает по фазе напряжение. Индуктивное реактивное сопротивление вызывает отставание по фазе тока от напряжения. Емкостное и индуктивное реактивные сопротивления прямо противоположны по создаваемым эффектам, и, следовательно, когда в цепи присутствуют и индуктивность, и емкость, общий эффект определяется разностью их значений. Эта разность называется реактивным сопротивлением цепи и обозначается символом X.

Комбинированное противодействие протеканию тока реактивного и активного сопротивлений цепи называется импедансом и обозначается символом Z.

В последовательной цепи RLC для вычисления полного реактивного сопротивления и импеданса используются следующие формулы:

X = XCXL, Z 2 = R 2 + X 2.

В случае параллельных цепей должны использоваться следующие формулы:

IX = IC IL,(IZ)2 = (IR)2 + (IX)2.

Реактивное сопротивление параллельной цепи также может быть емкостным или индуктивным, в зависимости от соотношения величин IC и IL.

Импеданс параллельной цепи находится с помощью формулы

IZ = U / Z.

Для определения тока в цепи при известном напряжении используется закон Ома для цепей переменного тока:

где I – ток элемента в амперах; U – напряжение на зажимах элемента в вольтах; Z – полное сопротивление элемента в омах.

Для резистора Z = R, для индуктивности Z = XL, для конденсатора Z = XC.

При выполнении теоретического расчета последовательных цепей необходимо по заданным величинам определить полное сопротивление (импеданс) цепи по следующей формуле:

.

Для цепи RL -элементов XC = 0, для цепи R С -элементов XL = 0.

Разность фаз напряжения и тока определяется по формуле

j = arctg(X / R).

Напряжения на отдельных элементах

UR = IR; UL = IXL; UC = IXC.

Для расчета мощности в цепях переменного тока применяют следующие выражения:

S = UI – полная (кажущаяся) мощность цепи, ВА;

P = UI cosj – активная мощность, Вт;

Q = UI sinj – реактивная мощность, ВАр.

 

Порядок выполнения работы

Работасостендом

1. Построение амплитудно-частотных (АЧХ) и фазочастот-ных (ФЧХ) характеристик RC - и RL -цепей.

1.1. Построение АЧХ и ФЧХ RC -цепи.

Соберите схему, предложенную на рис. 3.1, используя в ка-честве источника гармонического сигнала внешний низкочастотный генератор синусоидальных колебаний. Параметры R и С выберите из табл. 3.1. Напряжения на входе и выходе схемы контролируйте осциллографом.

Рис. 3.1. Схема эксперимента

 

Таблица 3.1

№ бриг. 1 2 3 4 5 6 7 8 9 10
R, Ом 510 3000 1500 5100 1000 5100 510 1000 510 1500
С, мкФ 0,33 0,68 1,00 0,1 0,22 0,33 0,68 1,00 0,1 0,22
L, мГн 100 510 480 680 330 710 330 480 480 330

 

Произвести измерение выходного напряжения RC -цепи U 2
(амплитудного или пикового значения) в диапазоне частот f 1f max, начиная с частоты f 1 ≈ 200 Гц при постоянной амплитуде входного напряжения U 1, формируемого на выходе генератора (U 1 = 2–3 В). Изменять частоту генератора можно так, чтобы выходное напряжение изменилось примерно на 8÷12 % от предыдущего значения. Результаты измерений занести в табл. 3.2, в которой предложены примерные значения частот для снятия АЧХ RC -цепи (низкочастотная RC -цепь: R =; C =, U 1 = 2 В). Для каждого значения частоты рассчитайте коэффициент усиления (коэффициент передачи) KU   как отношение амплитуд выходного и входного сигналов.

 

Таблица 3.2

 

f, кГц U 2 KU = U 2 / U 1 (T 2 – T 1) φ = – (T 2 – T 1) f ·360°
0,2        
1,0        
2,0        
3,0        
5,0        
8,0        
10,0        
15,0        

Одновременно для каждого значения частоты f измерьте разность фаз входного и выходного сигналов. Измерения производятся с помощью осциллографа. Измерению подлежит разность (T 2 – T 1), равная смещению сигналов по оси времени. Пример измерения фазовой задержки с использованием модели осциллографа приведен на рис. 3.2. Результаты измерений занести в табл. 3.2. Рассчитать разность фаз (фазовую характеристику) (см. формулу в табл. 3.2).

 

 

Рис. 3.2. Измерение фазовой задержки

 

 

По результатам расчетов и измерений построить АЧХ и ФЧХ.

1.2. Построение АЧХ и ФЧХ R L - цепи.

В схеме, предложенной на рис. 3.1, замените конденсатор на катушку индуктивности. В качестве индуктивности используйте обмотку W 1 или W 2 трансформатора Т 1 стенда. Параметры резистора R выберите из табл. 3.1. Повторите процедуру снятия АЧХ и ФЧХ, описанную в предыдущем пункте, для RL -цепи.


Поделиться с друзьями:

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.006 с.