Как Земля постарела, а потом сильно помолодела — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Как Земля постарела, а потом сильно помолодела

2021-01-29 68
Как Земля постарела, а потом сильно помолодела 0.00 из 5.00 0 оценок
Заказать работу

 

По сравнению со многими другими науками геология пережила поздний расцвет. Астрономы объяснили движение планет еще в XVII в.; физики открыли законы термодинамики и электромагнетизма в XIX в., а в начале XX столетия описали строение и свойства атомов. Удивительно, но к тому времени люди еще не знали ни о возрасте Земли, ни о процессах, протекающих в планетарных масштабах. Причина была не в бездарности геологов; просто Земля оказалась невероятно сложным предметом для изучения – одновременно слишком близким и далеким, слишком изменчивым в прошлом и, казалось, почти не меняющимся в настоящем. Тогда как другие науки делали большие успехи в описании и изучении природы с помощью телескопов, микроскопов и различных пробирок и мензурок, к Земле все эти методы научного исследования были неприменимы, не говоря уже о проведении лабораторных экспериментов. Кроме того, изучение Земли всегда было тесно переплетено с нашим восприятием себя как человеческого рода и дорогим нашему сердцу нарративом о месте человека среди других творений природы. Неудивительно, что нам было трудно сделать шаг назад и посмотреть на все объективным, незамутненным взглядом.

Геология гораздо больше, чем любая другая наука, требует дерзкого воображения и готовности к смелым логическим умозаключениям. Возьмем такую фундаментальную проблему, как определение возраста Земли. В XVIII в. большинство людей в Западном мире верили, что Земля появилась всего 6000 лет назад, как это следует из Библии (в 1654 г. архиепископ Ирландской церкви Джеймс Ашер с поразительной точностью рассчитал дату сотворения мира – воскресенье, 23 октября 4004 г. до Рождества Христова). Когда я спрашиваю у студентов сейчас, в XXI в., как бы они сами подошли к ответу на этот вопрос (если оставить в стороне их религиозные убеждения и забыть про известную им цифру в 4,5 млрд лет), обычно они отвечают что‑то вроде: «Ну, нужно найти самые старые породы и выяснить их возраст», но затем сами понимают, что ответ неверный. Как узнать, что эти породы и есть самые старые, и как определить их возраст? Подступиться к этой задаче кажется невозможным без опоры на всю систему знаний, накопленных современной геологией. Тем более удивительным представляется концептуальный скачок в понимании огромной глубины геологического времени, совершенный в 1789 г. шотландским медиком, фермером‑новатором, философом и естествоиспытателем Джеймсом Геттоном (Хаттоном) на основании наблюдений, сделанных на морском побережье у местечка Данбар[8].

Однажды, проплывая на лодке мимо скалистого мыса Сиккар‑Пойнт, Геттон обратил внимание на утес, который был сложен двумя совершенно разными толщами осадочных пород, разделенными отчетливо выраженной поверхностью перерыва: нижняя часть обнажения была образована более темными, почти вертикальными слоями, а верхняя часть – более светлыми, залегающими, как обычно, почти горизонтально (рис. 2). Многие до него проплывали мимо этого мыса, но думали только о том, чтобы порывистый ветер и штормовые волны не разбили их лодку об эти прибрежные камни. Геттон же увидел в утесе не просто опасность, а наглядное свидетельство некогда протекавших здесь геологических процессов. Проанализировав это и другие свои наблюдения, он сделал два поразительно глубоких вывода. Во‑первых, нижележащие вертикально напластованные породы представляли собой фрагмент некогда существовавшего горного хребта, морские слои которого были наклонены в результате поднятия земной коры. Во‑вторых, срезающая их поверхность отвечала длительному периоду эрозии, во время которого горное сооружение было разрушено, а поверх его реликтов накопились перекрывающие их горизонтально залегающие толщи осадочных пород.

 

 

Опираясь на свои оценки скорости эрозии, Геттон утверждал, что образование такого разрыва в напластовании – сегодня известного как угловое несогласие – требует непостижимо длительного интервала времени, почти бесконечного по сравнению с библейским возрастом Земли. Своими простыми, но революционными расчетами Геттон опроверг общепринятое убеждение, что в прошлом наш мир был совершенно другим и что теперь на смену бурному, нестабильному прошлому с его катаклизмами наподобие Всемирного потопа пришло стабильное настоящее. Если исходить из того, что возраст Земли составлял всего несколько тысяч лет, существование глубоких эрозионных долин и мощных толщ осадочных пород действительно можно было объяснить только крупномасштабными катастрофическими событиями. Геттон заменил это мировоззрение основополагающим принципом геологии – униформизмом, основанным на предположении, согласно которому геологические факторы неизменны во времени и, следовательно, геологические процессы в настоящее время протекают так же, как и в далеком прошлом Земли{4}.

Но геологическое воображение Геттона пошло еще дальше. В своем трактате «Теория Земли» (Theory of the Earth), написанном в 1788 г., он сделал даже более дерзкий обобщающий вывод: что этот конкретный пример несогласия напластований был результатом всего лишь одной итерации в бесконечной череде циклов накопления, поднятия, эрозии и нового осаждения осадочных пород на Земле, уходившей в туманную глубь времен. Гениальная догадка Геттона о глубоком времени, радикально изменившая представления людей о прошлом Земли, открыла двери для интеллектуального поиска, приведшего к появлению современной геологии и биологии. Без Геттона и его последователя Чарльза Лайеля, который поколение спустя возвел униформизм в ранг естественнонаучной доктрины в своем внушительном, риторически виртуозном труде «Принципы геологии» (Principles of Geology), Чарльз Дарвин, возможно, не пришел бы к пониманию времени как силы, способной формировать живые организмы путем естественного отбора. (Дарвин взял с собой первый том «Принципов геологии» на борт «Бигля» и изучал его в ходе пятилетней кругосветной экспедиции, поэтому пламенное учение Лайеля о древности Земли, несомненно, повлияло на взгляды британского натуралиста.) Но при всей своей притягательности предложенное Геттоном видение мира как бесконечно повторяющейся петли было в некотором роде химерой, абстракцией, говорившей, по сути, о ненужности тяжелой и кропотливой работы по реконструкции конкретных деталей планетарной биографии. В греческом языке существует полезное различие между двумя понятиями времени: хроносом как хронологической последовательностью, измеримым временем, и кайросом – «подлинным временем», исполненным содержания и смысла, которое проявляется только в нарративе. Геттон дал нам начальное представление о планетарном хроносе, но его калибровка, наполнение кайросом, потребовало титанического труда геологов на протяжении следующих двух столетий.

Ранние попытки преобразовать геологические данные в летопись истории Земли были основаны на предположении о том, что определенные виды пород формировались на всей планете в строго определенные периоды времени. Кристаллические породы, такие как граниты и гнейсы, считались исходными, или «первичными», а слоистые, вроде известняков и песчаников, – «вторичными». Песчаные и гравийные отложения средней связности относили к «третичным», а рыхлые, несцементированные осадки – к «четвертичным» (термин «третичный» продержался до конца XX в., а «четвертичный» сохраняется, хотя и в отличном от изначального смысле, и в современной геохронологической шкале). Однако в то время отсутствовала возможность определить, действительно ли возраст этих разновидностей пород был одинаков в планетарном масштабе.

В начале 1800‑х гг. были сделаны первые предварительные калибровки шкалы глубокого времени благодаря проницательности английского строителя каналов Уильяма Смита, который заметил, что при земляных работах в одних и тех же слоях осадочных пород обнаруживаются одинаковые виды ископаемых органических остатков – раковин – и что последовательность этих слоев одинакова по всей Англии (рис. 3). Эти руководящие ископаемые, оказавшиеся такими же характерными для определенных геологических периодов, как дамские шляпки с вуалью или брюки‑клеш для культурных эпох, дали возможность проследить лишенные пространственной непрерывности слои сначала на территории Великобритании, а затем и на территории Франции – по другую сторону Ла‑Манша. Палеонтологи‑любители, такие как знаменитая собирательница окаменелостей Мэри Эннинг из Лайм‑Риджис, увековеченная в английской скороговорке She sells sea shells («Она продает ракушки»), внесли неоценимый вклад на ранних этапах формирования геохронологической шкалы. Первоначальные представления, что слои осадочных пород носят глобальный характер и были образованы в результате одинаковых событий по всему земному шару, пришлось отвернуть: долгая история планеты оказалась гораздо сложнее, чем представлял себе Геттон. Однако десятилетия кропотливого труда по составлению карт и сбору, классификации, каталогизации и систематизации данных в конечном итоге привели к установлению глобальной корреляции разрезов осадочных пород в масштабах всей планеты.

 

 

Результатом этой работы стала известная нам сегодня геохронологическая шкала, которая, если двигаться в обратной последовательности, от сегодняшнего дня в глубь времен, включает современную кайнозойскую эру, называемую веком млекопитающих, затем мезозойскую эру с ее грозными рептилиями, палеозойскую эру с ее мрачными каменноугольными болотами, тяжело пыхтящими двоякодышащими рыбами и несметными полчищами трилобитов. Изобилие ископаемых форм жизни дало возможность подразделить каждую из вышеуказанных эр на периоды, периоды на эпохи, эпохи на века. Но дальше ученые наткнулись на, казалось бы, неразрешимую загадку, над которой ломал голову и Чарльз Дарвин: под толщей палеозоя, под самым нижним ракушечным слоем кембрийского периода, породы вдруг стали немыми: в них не было обнаружено никаких ископаемых остатков. Складывалось впечатление, будто жизнь в кембрии появилась внезапно, буквально ниоткуда. В отсутствие окаменелостей, которые служили единственным ориентиром для демаркации геологического времени, геологи Викторианской эпохи попросту не располагали нужными инструментами, чтобы прочитать зашифрованные письмена самых древних пород, поэтому всю эту часть земной истории они объединили под общим названием «докембрий». Прошло столетие, прежде чем геологи нашли доказательства того, что докембрийская Земля кишела жизнью и что докембрий составляет почти 90 % всей истории Земли.

Вторая половина XIX в. была, как я думаю, сродни «темным векам» для геологии.

После предложенного Геттоном трансцендентального видения самообновляющейся Земли, вдохновляющего трактата Лайеля о том, как геология позволит «проследить события в бесконечную глубь времен», и гениального дарвиновского синтеза биологических и геологических наблюдений в виде эволюционной теории внутренние и внешние силы будто намеренно сговорились, чтобы замедлить развитие научной мысли. В роли одной из таких сил выступил энергичный британский физик, корифей термодинамики, Уильям Томсон (1824–1907), больше известный как лорд Кельвин, который заинтересовался геохронологией вскоре после публикации труда Дарвина «Происхождение видов» в 1859 г. Он справедливо раскритиковал идею Геттона о бесконечно древней Земле, которая представляла планету своего рода вечным двигателем, грубо нарушая второй закон термодинамики. Однако та яростная атака, которой он подверг Дарвина за его бесхитростную оценку минимального возраста Земли в первом издании «Происхождения видов», свидетельствовала о том, что великим физиком двигали не совсем научные мотивы.

Не зная истинных механизмов наследственности, Дарвин тем не менее пришел к верному заключению, что эволюция путем естественного отбора должна была занять от сотен миллионов до миллиардов лет, чтобы произвести все наблюдаемое разнообразие живых и ископаемых форм жизни. Его интуитивная догадка о величине геологического времени была поистине гениальной, однако ее достоверность была подорвана включением в тщательно продуманный во всех остальных отношениях научный труд единственной ошибочной попытки количественного расчета. Как и Геттон, Дарвин использовал для измерения прошедшего времени скорость эрозии. Значительно недооценив рельефообразующую способность английских рек, он предположил, что образование долины в районе Уилд заняло порядка 300 млн лет (теперь мы знаем, что эта оценка была завышена по меньшей мере в 100 раз). Поскольку породы, слагающие склоны долины, были еще старше, но в то же время являлись одними из самых молодых в этом регионе, Дарвин предположил, что возраст самой Земли может составлять тысячу миллионов (миллиард) лет и даже больше. Его вывод был на удивление близок к истине, однако в своих расчетах он неосторожно взял за основу один‑единственный неверный аргумент, который можно было легко опровергнуть.

С 1864 по 1897 г. Кельвин опубликовал ряд работ, в которых, опираясь на новейшие физические знания, а именно на предположения о скорости кондуктивного охлаждения планеты и продолжительности существования Солнца, приводил уточненные расчеты максимально возможного возраста Земли. Его первоначальная оценка составляла несколько сотен миллионов лет, но в итоге уменьшилась всего до каких‑то 20 млн. Разочарованные тем, что Кельвин отводил геологической истории планеты все меньше и меньше времени, некоторые геологи предприняли попытку провести независимые оценки, суммировав толщину всех известных слоев, начиная с кембрийского периода до настоящего времени, и затем разделив эту цифру на предполагаемую скорость накопления осадков. При таком подходе возраст Земли мог быть от нескольких сотен миллионов до нескольких миллиардов лет, однако неизбежные при таких расчетах неопределенности позволяли легко опровергнуть эти результаты. Среди молодых физиков некоторые также высказывали сомнения по поводу фундаментальных предположений, лежавших в основе расчетов Кельвина, – ошибочность которых будет доказана десятилетия спустя, – но им не хватило смелости навлечь на себя гнев общепризнанного корифея науки. Еще один оригинальный подход был предложен химиком Джоном Джоли (позже изобретшим цветную фотографию), который решил измерить возраст Земли по концентрации натрия в морской воде. Согласно его гипотезе (также ошибочной), реки постоянно вымывают из горных пород на суше растворяемые элементы и приносят их в морские водоемы, в результате чего вода в океанах со временем становится все более соленой. Используя средние значения содержания натрия в речной воде, Джоли оценил возраст Земли в 100 млн лет, тем самым отвоевав часть позиций, которые геологи уступили лорду Кельвину[9].

В последующие годы Дарвин называл Кельвина своей «самой большой неприятностью». Он умер в 1882 г., терзаясь мучительными сомнениями по поводу труда всей своей жизни: его эволюционная теория была несовместима с предполагаемым возрастом планеты. В XX в. физика опровергла аргументы его противника, но истинные мотивы лорда Кельвина становятся очевидны из речи, произнесенной им по случаю избрания на пост президента Британской ассоциации содействия развитию науки: «Я всегда считал, что гипотеза естественного отбора не содержит истинной теории эволюции, если эта эволюция в биологии вообще имела место… Повсюду мы видим убедительнейшие доказательства разумного и благого замысла… и осознаем, что все живое зависит от единого неустанно трудящегося Творца и Правителя»[10].

 

Чаепитие с Дарвином

 

Вопрос о продолжительности геологического времени волновал Дарвина, возможно, больше, чем любого другого человека в истории, и всякий раз, когда я думаю о его интеллектуальных мучениях в последние десятилетия жизни, то испытываю к нему глубокое сочувствие. Поэтому к 200‑летнему юбилею Дарвина я организовала в библиотеке нашего университета публичные чтения: десятки преподавателей, сотрудников и студентов по очереди зачитывали вслух 20‑минутные отрывки из «Происхождения видов», которые каждый час перемежались короткими дискуссиями.

Обстановка прекрасно соответствовала мероприятию: в обшитом деревянными панелями зале редких книг мы угощали собравшихся традиционным британским чаем и булочками‑сконами с джемом, а несколько чтецов даже пришли в костюмах Викторианской эпохи. Я не ожидала, что этот интеллектуальный марафон может оказаться таким волнующим опытом и вызвать у меня столько эмоций. Слова Дарвина, звучавшие на протяжении всего дня, и атмосфера в целом производили ошеломляющий эффект. В словах, произносимых мужчинами и женщинами, учеными и музыкантами, философами и экономистами, представителями молодого и старшего поколения, можно было услышать живой человеческий голос самого Дарвина – его восхищение мельчайшими деталями мира природы, его скрупулезную основательность как ученого (несколько слушателей даже заснули во время чтения длинных разделов, посвященных селекции голубей), его нежелание брать на себя роль революционера и, самое трогательное, одолевавшие его сомнения и робость вкупе с попыткой заранее защитить себя от неизбежных нападок оппонентов. «Происхождение видов» – это смиренное, великолепно аргументированное, методичное (и зачастую довольно утомительное) изложение поистине революционной идеи, которая, как предвидел сам Дарвин, подвергнется самой яростной критике. Чего он, похоже, не предугадал, так это того, что одним из главных предметов нападок станет вопрос о геологическом времени. В 9‑й главе он смело написал: «Тот, кто, прочтя великое произведение сэра Чарльза Лайеля „Принципы геологии“, которое будущий историк признает как совершившее революцию в естественных науках, все же не захочет допустить всю громадность истекших периодов времени, пусть тотчас же закроет этот том».

К концу марафона у меня возникло странное иррациональное ощущение, будто Дарвин находится в комнате среди нас, и острое желание поговорить с ним. Я вспомнила портрет пожилого Дарвина, висящий в Национальной портретной галерее в Лондоне. На нем изображен ссутулившийся человек с печальным взглядом, который, кажется, почти физически раздавлен интеллектуальными ограничениями своего времени. Мне хотелось рассказать ему, каким удивительным образом расцвела и эволюционировала его научная идея, породив бесчисленные новые области исследований, и наконец‑то разрешить его интеллектуальные терзания, поделившись с ним важной новостью: Земля – очень старая планета.

 

Породы отсчитывают время

 

Помимо нанесенной Дарвину обиды та дискуссия о возрасте Земли причинила серьезный ущерб и самой геологии. Поскольку выводы физики все больше противоречили растущему массиву данных о длительной планетарной истории, в геологическом сообществе распространилась идея, что геология должна порвать с другими науками и использовать собственные, независимые методы научных исследований. Такой тупик в отношениях с физикой хотя отчасти и был объяснимым, но, к сожалению, негативно повлиял на несколько поколений геологов и на десятилетия затормозил развитие геологической науки. Отвращение к физике и недоверие к «чужакам» привели к тому, что геологическое сообщество много лет упорно отрицало теорию дрейфа материков, предложенную в 1915 г. немецким метеорологом Альфредом Вегенером. Вегенер представил убедительные доказательства того, что земные континенты некогда были соединены в один суперконтинент Пангею. Но из‑за отсутствия у него геологического образования, вкупе с резким неприятием американцами и британцами всего немецкого во время и после Первой мировой войны, его идеи оставались преданными анафеме в геологических кругах вплоть до 1960‑х гг., когда они были возрождены в виде прогрессивной концепции тектоники плит.

Тем не менее в первые годы XX в. именно революция в физике обеспечила инструменты, которые позволили вывести заплутавшую геологию из викторианского лабиринта. Всего десятилетие спустя после случайного открытия Антуаном Анри Беккерелем в 1896 г. явления радиоактивности этот феномен уже был использован для определения возраста горных пород. К 1902 г. исследования Марии Кюри в Париже и Эрнеста Резерфорда в Кембридже показали, что радиоактивный распад является своего рода природным алхимическим процессом, в ходе которого некоторые элементы (например, уран) самопроизвольно испускают энергию и в результате превращаются в другие элементы (например, свинец) и это происходит с постоянной скоростью, пропорциональной оставшемуся количеству исходного элемента. Сейчас нам известно, что химические элементы, которые определяются количеством протонов в ядре, могут иметь разное количество нейтронов – такие разновидности элементов были названы изотопами – и что разные материнские изотопы могут испытывать разные виды распада с образованием разных дочерних изотопов других элементов. Но на заре XX в. структура атома еще не была известна: атомное ядро было открыто Резерфордом только в 1911 г., а изотопы – еще несколько лет спустя.

В 1903 г. Резерфорд доказал, что процесс радиоактивного распада следует экспоненциальному закону, и это сразу натолкнуло его на мысль, что данный процесс можно использовать как естественные часы для определения возраста урансодержащих пород. В 1908 г. (всего через год после смерти лорда Кельвина) одаренный 18‑летний студент‑физик лондонского Имперского колледжа Артур Холмс заинтересовался этой идеей и решил предпринять амбициозный проект по определению абсолютных геологических дат[11]. Холмс начал собирать образцы горных пород, содержащих определенные минералы, особенно циркон, которые, как было известно, при своей кристаллизации могли включать в кристаллическую решетку только атомы урана (U), но не свинца (Pb). Затем он измерял относительные концентрации урана и свинца в таком минерале и, используя закон радиоактивного распада Резерфорда, который количественно описывал зависимость радиоактивности от времени, рассчитывал время, прошедшее с момента кристаллизации минерала[12].

С математической точки зрения эти расчеты на удивление просты и требуют знания всего двух чисел: (1) соотношения дочернего и материнского элементов (Pb: U), которое растет вместе с увеличением возраста породы и не зависит от первоначального (неизвестного) количества исходного материала (табл. 2. 1) и (2) постоянной распада материнского элемента, которая, по существу, является вероятностью распада каждого отдельного атома за определенное время, что можно сравнить с шансами человека выиграть в лотерею в отдельно взятом году. Таким образом, постоянная распада измеряется в единицах времени t‑1 (или 1/t). Резерфорд вычислил постоянную распада урана на основе измерения количества радиоактивного излучения, испускаемого определенной массой урана за данный интервал времени. Постоянная распада также обратно пропорциональна более знакомой величине – периоду полураспада, т. е. времени, за которое половина материнского вещества распадается, превращаясь в дочернее вещество. Другими словами, низкое значение постоянной распада (низкая вероятность выигрыша в лотерее) означает длительный период полураспада (очень нескорый выигрыш), и, наоборот, высокое значение этой константы означает короткий полураспад (быстрое обогащение).

 

 

К 1911 г., несмотря на все еще недостаточное понимание явления радиоактивности и примитивное лабораторное оборудование, Артур Холмс определил абсолютный возраст полудюжины магматических пород, чьи взаимоотношения с осадочными слоями позволяли определить диапазоны их относительного возраста на геохронологической шкале, основанной на ископаемых остатках. Три образца пород относились к хорошо охарактеризованному окаменелостями палеозою и еще три – к хронологически темному, недифференцированному докембрию. Хотя на тот момент не было известно, что свинец образуется в результате распада не только урана, но и еще одного радиоактивного элемента – тория, вычисленные Холмсом даты были на удивление близки к современным оценкам (в пределах десятков миллионов лет).

Самой первой породой, исследованной Холмсом, был гранит из Норвегии, который (как предполагалось на основе его секущих взаимоотношений с толщей осадочных слоев, богатых ископаемыми остатками) образовался в девонском периоде. Радиоактивный анализ показал, что возраст этого гранита составляет приблизительно 370 млн лет – в 18 раз больше, чем возраст Земли, согласно оценке лорда Кельвина. А возраст докембрийского метаморфического гнейса с Цейлона (ныне остров Шри‑Ланка) оказался равным 1,64 млрд лет, т. е. на целых два порядке больше, чем упомянутая оценка. Интуитивная догадка Дарвина была полностью реабилитирована. Долго господствовавшие кельвиновские декларации мгновенно потеряли свое значение, поскольку радиоактивность не только дала возможность непосредственно измерить абсолютный возраст пород, но и оказалась важным источником внутреннего тепла, не учтенного Кельвином в его расчетах скорости охлаждения планеты. (Годы спустя Холмс оспорит еще одно фундаментальное предположение Кельвина, утверждая, что Земля остывает в результате действия не столько кондуктивного, сколько конвективного механизма теплообмена.) Со временем Холмс был признан одним из наиболее выдающихся геологов XX в. Самым важным было то, что созданная им абсолютная геохронологическая шкала, пусть и не совсем точная, теперь могла быть откалибрована. Даже самые отдаленные глубины геологического времени оказались доступны для измерения. С этого момента докембрий перестает быть белым пятном, недоступным для человеческого познания.

 

Обычные осадки

 

На самом деле становление новой науки геохронологии (буквально «учения о геологическом времени») заняло еще не один десяток лет. Использование радиоактивных изотопов как высокоточных геологических часов стало возможным лишь благодаря прогрессу в ядерной физике, космохимии (которая в том числе изучает звездное происхождение земных химических элементов), петрологии (изучающей магматические и метаморфические породы), минералогии, а также благодаря разработке новых аналитических приборов, в частности масс‑спектрометров, способных различать разные изотопы одного элемента и измерять их концентрацию. Одна из нетривиальных проблем заключалась в том, что геохронологическая шкала, столь кропотливо составленная геологами Викторианской эпохи с использованием ископаемых органических остатков, была полностью основана на осадочных породах. Любые получаемые изотопные датировки отражали не возраст самих осадочных отложений, а время кристаллизации предшествовавших магматических или метаморфических пород, ставших впоследствии источником обломочного материала изучаемых осадков. Таким образом, установление абсолютных датировок для основанной на палеонтологических данных стратиграфической шкалы потребовало поиска «удачных» обнажений (выходов на поверхность коренных горных пород), в разрезах которых осадочные породы с четко определенным биостратиграфическим возрастом переслаивались бы с магматическими породами или прорывались последними, что позволило бы непосредственно связать изотопный возраст этих магматических пород со временем, отвечающим образованию ископаемых остатков (рис. 4). Для этой цели идеально подходят слои вулканического пепла, поскольку они сложены неизмененными кристаллами магматического происхождения, осаждение которых из атмосферы происходило в геологическом отношении практически мгновенно, и перемежаются с палеонтологически охарактеризованными осадочными породами.

Слои пепла в толще осадочных пород дают нам общее представление о том, как формировалась каменная летопись прошлого Земли. Глядя на слоистые породы, например на невероятные по красоте стены Большого каньона, можно подумать, что каждый слой образуется наподобие снежного покрова, который покрывает всю данную область за один четко определенный отрезок времени. Но так происходит далеко не всегда. Возьмем, например, красивый, белый, почти чисто кварцевый песчаник Сент‑Питер ордовикского возраста, выходящий на поверхность вдоль речных долин в Миннесоте, Айове, Висконсине и на севере Иллинойса, а также образующий живописную чашу водопада Миннехаха близ Миннеаполиса. На протяжении десятилетий эти песчаники служили источником кремнезема для производства оконного стекла на заводе «Форд» в городе Сент‑Пол. Во времена сухого закона естественные полости в песчаниках этой формации вдоль реки Миссисипи были превращены в систему пещер под агломерацией городов‑близнецов (Миннеаполиса и Сент‑Пола), где размещались тайные склады алкоголя и подпольные бары.

 

 

Песчаник Сент‑Питер представляет собой хрупкую, мало похожую на «камень» породу, и, когда она распадается в ваших руках на однородные округлые зерна, легко увидеть, что это древний пляжный песок. Однако песчаники Сент‑Питер выходят на поверхность на территории четырех штатов и, как показывают результаты бурения, продолжаются на глубине под Мичиганом, Индианой и Огайо. Ни один пляж не мог бы покрывать такую огромную территорию в отдельно взятый момент времени. В действительности формация Сент‑Питер образовалась в результате постепенной миграции пляжей по поверхности земли, по мере того как древние мелководные моря то покрывали эти территории, то отступали с них на протяжении миллионов лет. Однажды в ордовике в зарождающихся Аппалачах, в сотнях километров отсюда, произошло извержение супервулкана, и наполнившие атмосферу облака вулканического пепла осели на моря Мидконтинента, оставив по всему этому региону тонкий слой зеленоватой глины, как если бы это была точно датированная дневниковая запись. В некоторых местах данный пепловый слой встречается вблизи кровли формации Сент‑Питер, но на остальных участках песчаники данной формации залегают намного ниже этого пеплового уровня, будучи погребенными под толщей других отложений задолго до извержения вулкана. Это говорит о том, что возраст песчаников Сент‑Питер, несмотря на то что слой этих безошибочно диагностируемых пород непрерывно прослеживается на сотни километров, не является одинаковым на всем его протяжении. Обобщая, можно сказать, что, за исключением слоев, которые маркируют внезапные региональные или глобальные события, такие как мощное извержение вулкана или удар крупного метеорита, регионально распространенные осадочные толщи не являются строго изохронными, т. е. сформированными в один и тот же момент времени. Напротив, они отражают медленное перемещение обстановок осадконакопления по поверхности Земли во времени по мере изменения уровня моря и условий окружающей среды. Выражаясь геологическим языком, такие стратиграфические подразделения являются диахронными, т. е. они пересекают время.

 

Бюрократы времени

 

В наши дни геохронологическая шкала – не просто таблица или даже многотомный фолиант, а гигантская цифровая база данных, которая находится в ведении Международной комиссии по стратиграфии (International Commissionon Stratigraphy, ICS) – самого старого и самого важного органа Международного союза геологических наук. Эта комиссия устанавливает строгие правила в отношении геологических подразделений и их ограничений, а также занимается скрупулезной каталогизацией обнажений, формаций пород, ископаемых органических остатков, изотопных датировок, геохимических данных и аналитических протоколов, ведя постоянную работу по картированию геологического времени со все более высоким разрешением.

С 1970‑х гг. ICS занимается поиском по всему миру конкретных участков, которые могут служить международными стандартами для определения границ между всеми подразделениями геохронологической шкалы. Среди геологов такие участки, официально именуемые глобальными стратотипическими разрезами и точками (ГСРТ) (Global Boundary Stratotype Sections and Points, GSSP), известны как «золотые гвозди». На этих участках должны присутствовать хорошо обнаженные породы, содержащие диагностические в биостратиграфическом отношении ископаемые органические остатки, относящиеся к двум смежным интервалам геологического времени. Кроме того, такие участки должны быть защищены от разрушения человеком или природой. Местонахождение конкретного слоя, выбранного в качестве границы в данном разрезе GSSP, часто описывается весьма своеобразно, с упоминанием очаровательных подробностей. Например, обнажение, в котором зафиксирован «золотой гвоздь», отмечающий стратотипическую границу сеноманского яруса верхнего мела, находится высоко во Французских Альпах «в 36 метрах ниже кровли формации Марн‑Блё (Голубые мергели) на южном склоне горы Мон‑Ризу»[13].

Первоначальное подразделение геохронологической шкалы на эоны, эры и периоды было осуществлено в основном британскими геологами в XIX в., поэтому названия периодов палеозоя в наибольшей степени отражают именно это географическое влияние: название кембрийского периода происходит от латинского наименования Уэльса (Cambria), девонского периода – от графства Девоншир, родины британской церемонии чаепития, название каменноугольного периода, или карбона, происходит от богатых пластов каменного угля на севере Англии. Но дальнейшее деление геохронологической шкалы на более мелкие подразделения – эпохи и века – в полной мере отражает уже международный характер усилий по картографированию геологического времени: цзяншанский (Jiangshanian) и гужангинский (Guzhangian) века в кембрии; эйфельский и пражский века в девоне, московский и башкирский века в карбоне. Международная комиссия по стратиграфии – это своего рода временной аналог Организации Объединенных Наций, глобальная ассамблея хранителей геологического времени.

И эта комиссия, подчас с излишней нервозностью, настаивает на сохранении тонкого, но важного различия между геохронологической и стратиграфической шкалой – между геологическим временем и его хроникой, зафиксированной в слоях горных пород. Геологическое время подразделяется на эоны, эры, периоды, эпохи и века, а соответствующие этим подразделениям породы – на эонотемы, эратемы, системы, отделы (серии) и ярусы. Точно так же, имея в виду геологическое время, следует говорить, например, «ранний» или «поздний» ордовик, но о соответствующих слоях пород следует говорить только «нижний» или «верхний». Время (хронос) может течь без камней (наполняющих его кайросом), но камни не могут существовать вне времени. Однако время исчезает, а камни остаются.

 

Уран‑свинцовые часы

 

Первая попытка Артура Холмса определить абсолютный возраст пород, предпринятая еще до того, как было открыто строение атома и существование изотопов, была подобна интуитивной догадке Дарвина о существовании феномена наследственности, намного опередившей открытие генов и ДНК. В обоих случаях прошли годы, прежде чем остальная наука смогла в полной мере осознать и развить все следствия, вытекающие из их провидческих идей. Только к 1930‑м гг. стала в полной мере понятна сложная геохимия изотопов свинца. В 1929 г. Эрнест Резерфорд установил, что два разных материнских изотопа урана, 238U и 235U, имеют разные периоды полураспада (4,47 млрд и 710 млн лет соответственно) и в результате радиоактивного распада превращаются в два разных изотопа свинца – 206Pb и 207Pb. Вскоре после этого Альфред Нир, физик из Миннесотского университета, открыл еще один изотоп свинца – 204Pb, имеющий не радиогенное происхождение, т. е. этот свинец изначально был свинцом и не являлся продуктом радиоактивного распада. Нир также разработал основной инструмент изотопного анализа – массR


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.047 с.