Микробы в продуктах и кормах — КиберПедия 

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Микробы в продуктах и кормах

2021-01-29 64
Микробы в продуктах и кормах 0.00 из 5.00 0 оценок
Заказать работу

 

В теплые летние месяцы мякоть хлеба иногда превращается в липкую желто‑коричневую массу с неприятным запахом. Хлеб, пронизанный беловатыми волокнами, плохо режется. Его нельзя есть. Виновником этого бывает Bacillus mesentericus, который сохраняется внутри хлеба при его выпечке, поскольку температура там не превышает 100 °C. При длительном хранении в теплом помещении крахмал и белки, содержащиеся в хлебе, начинают разлагаться микроорганизмами. Из воздуха на уже выпеченный хлеб могут попадать споры грибов, вызывающие его плесневение. В прошлом большой вред хлебу наносили бактерии Serratia marcescens, которые вызывали в нем появление кроваво‑красных колоний. О них мы уже упоминали.

В молоко микробы попадают при доении. Их количество часто зависит от различных факторов – здоровья коровы, санитарных условий ее содержания, а также от способов обработки молока. Чем меньше в нем микробов, тем дольше сохраняются его свойства как продукта питания. Загрязненное молоко может содержать бактерии, дрожжи и микроскопические грибы.

Молоко предоставляет микробам очень благоприятные жизненные условия. Они легко размножаются и изменяют его состав. Все мы по собственному опыту знаем, как быстро скисает свежее молоко. Виновники этого – молочнокислые бактерии, сбраживающие сахар в молочную кислоту. Если провести микробиологические и химические исследования такого молока, то мы увидим, что вслед за молочнокислыми бактериями в нем начнут размножаться и другие микробы. Появятся микроскопические грибы, использующие в своем обмене веществ молочную кислоту, что в свою очередь создаст условия для жизнедеятельности гнилостных бактерий.

Такие молочные продукты, как масло, сыр, брынза, также подвержены действию микроорганизмов. Масло приобретает неприятный запах, плесневеет или желтеет в результате деятельности нежелательной микрофлоры.

Различные сыры изготовляют из молока при обязательном участии определенных микроорганизмов. Но бывают случаи, когда в сыр при его производстве проникают микробы, вызывающие нежелательные процессы; например, в плавленых сырах развивается такое количество газов, что последние не только вспучивают массу сыра, но и разрывают упаковку. Таким образом, при обработке молочных продуктов одни микробы помогают нам, другие – злостно вредят.

Нападению микроорганизмов подвергается и мясо. Большей частью они попадают в мясо при его обработке и, очень быстро размножаясь, вызывают различные нарушения его пищевых качеств.

Особенно часто на сыром мясе развиваются кишечные бактерии. За короткий срок они вызывают процессы гниения и брожения, представляющие по существу, как мы уже знаем, разложение питательных веществ. Бывает, что мясо начинает светиться – это значит, что в нем поселились фосфоресцирующие бактерии. При повы пенной влажности воздуха на мясе появляются различные микроскопические грибы, образуя цветные пятна. В мясе больных животных могут находиться и болезнетворны? микробы, очень опасны? для человека.

В последнее время необычайно широко используются самые различные пищевые консервы. Мясные продукты, сгущенное молоко, овощи, фрукты, а также готовые «блюда» в консервах все чаще появляются на нашем столе. В принципе консервирование должно препятствовать размножению и разлагающей деятельности микробов. Но бывает, что и в консервах встречаются живые микроорганизмы, которые, попав в благоприятные условия, тут же начинают размножаться и могут стать возбудителями инфекционных заболеваний. Чаще всего это анаэробные бактерии, прекрасно существующие в бескислородной среде.

Картофель, овощи и фрукты приносят на себе обитателей мира микробов часто уже прямо с поля и из садов.

«Истина в вине» – гласит старое латинское изречение. Но в нашем путешествии по следам микробов нам важно знать другое. Находятся ли в вине микробы? Читатель, безусловно, ответит положительно и будет прав. Мы найдем их в вине, пиве и даже в безалкогольных напитках. Они попадают туда либо в процессе производства (брожение вина и пива вызывают дрожжи), либо во время дальнейших процедур. Если при изготовлении напитка будет использована загрязненная вода или не будут соблюдены строгие требования гигиены, напиток может стать носителем болезнетворных микробов. Бактерии тифа или дизентерии, например, сохраняются в пиве несколько суток.

Растительные корма уже в природных условиях, «на корню», не свободны от различных микроорганизмов. Попадают они на растения и при хранении кормов, особенно неправильном. Мы уже знаем, что недосушенное сено при хранении становится очагом деятельности термофильных микробов. Микробы разлагают целлюлозу, выделяя при этом тепло. Зерно хлебных злаков при недостаточном высушивании также может разогреваться под влиянием термофильных микробов. В результате «самовозгорания» зерно обугливается.

Попадающие на кормовые злаки микроскопические грибы разлагают питательные вещества, обесценивая качество кормов, а также выделяют ядовитые соединения, которые могут стать причиной отравления скота. Известная спорынья, паразитирующая на ржи, вызывает эрготизм[15]. Этому заболеванию подвержены и животные, и человек, оно может привести к смерти. Вызывает отравление скота и другой гриб, живущий на злаках (из рода Paspalum) в субтропических и тропических странах.

Головня и различные ржавчины – паразиты хлебных злаков, кукурузы и кормовых трав – также бывают причиной опасных заболеваний. В Югославии накануне второй мировой войны было много случаев отравления детей, которые питались продуктами из кукурузных зерен, пораженных головней.

Ядовитые продукты жизнедеятельности грибов, опасные для животных и человека, называются микотоксинами. Из них наиболее известны а флатоксины, продуцируемые грибами из рода Aspergillus, в особенности видом A. flavus (отсюда и название этой группы токсинов). Они ядовиты для многих животных; установлено также, что они могут вызывать и рак. Афлатоксины были обнаружены на пищевых продуктах и кормах. В 1960 году в Великобритании погибло большое число морских свинок, питавшихся мукой из арахиса, который был заражен грибом A. flavus. В 1968 году в западной части Явы умерло 60 человек, съевших слегка заплесневелые продукты из арахиса, а в Британской Гвиане немало местных жителей погибло в результате потребления продуктов, в которых потом было установлено присутствие афлатоксинов.

 

Микробы – вредители

 

Древесина, в которой содержится достаточное количество влаги, становится объектом бурной деятельности микробов. В сырых квартирах, на судах и в шахтах на древесине растут в первую очередь различные виды микроскопических грибов, а нередко и бактерий, разлагающих целлюлозу или иные составные части древесины. Древесина гниет, окрашиваясь в необычные для нее цвета или обращаясь в порошок.

Волокна различного текстильного сырья также нередко становятся объектом разлагающей деятельности микробов. Гриб Ashbya gossypii разрушает волокна хлопка еще в семенных коробочках. Разлагается микроорганизмами и овечья шерсть. Эти микробы, как правило, распространены в навозе или на загнивающих растительных остатках и представлены бактериями, актиномицетами и микроскопическими грибами.

В тропиках различные микроскопические грибы часто находят на лаке, которым покрыты машины. Слой лака разъедается, и металл подвергается коррозии. Электрические моторы, экспортируемые в тропические области, должны быть защищены особыми лаками, содержащими фунгицидные вещества[16]. Вредному влиянию микробов подвержены различные ткани и изоляционные материалы.

Микробы часто бывают причиной недолговечности водопроводных труб. Железобактерии окисляют железо, что приводит к закупорке труб. Серобактерии, в результате жизнедеятельности которых образуется серная кислота, также способствуют коррозии железа и других металлов, растворяющихся в этой кислоте. Обе группы бактерий встречаются в сырой нефти и повреждают трубы нефтяных вышек и насосов. По мнению некоторых специалистов, микробы являются неотъемлемой частью среды, поэтому играют важную роль в процессах коррозии бурильных установок.

Они участвуют также в процессах разложения каучука, нефти и многих других природных материалов, а также бумаги, текстиля и пластмасс. Итак, микробы открывают свое новое лицо – лицо опасных вредителей.

 

Космическая микробиология

 

Наша эпоха получила много наименований, связанных с успехами естественных наук. Говорят об «атомном веке», «эре антибиотиков», «эпохе кибернетики». В последнее время начинают говорить и о «космическом веке». Без преувеличения можно сказать, что мы находимся на пороге волнующей страницы человеческой истории. За очень короткий срок мы стали свидетелями запуска сотен искусственных спутников. Первые посланцы Земли взлетели к Луне, Венере и Марсу, подобно планетам Солнечной системы бороздят космос пилотируемые корабли, увеличивается семья космонавтов. Появились проекты полетов к другим планетам нашей Солнечной системы, о межпланетных путешествиях написано много увлекательных романов.

Космический век принес с собой и новые проблемы в области биологических наук. Рассмотрим некоторые вопросы, возникшие в связи с этим в микробиологии. Микроорганизмы – эти мельчайшие представители живого – призваны сыграть важную роль в освоении человеком Вселенной.

Читатели, наверное, еще помнят, что в экспериментальных космических полетах участвовали и живые организмы. Самыми маленькими «пассажирами» были культуры микроорганизмов. Они позволили изучить влияние космических лучей на мелкие живые существа. Полученные сведения были использованы для решения сложных вопросов, связанных с полетом человека в космическом пространстве, в частности вопросов защиты от пагубного влияния космических излучений.

На борту первых космических кораблей были и микроскопические зеленые растения – одноклеточные водоросли. Мы знаем, что зеленые водоросли осуществляют фотосинтез, при котором из воды и углекислоты под влиянием солнечного света образуются основные, энергетически наиболее важные соединения – сахара. Преобразование световой энергии в химическую, связанную в молекулах сахаров, обеспечивает хлорофилл, находящийся в клетках водорослей. Упрощенное представление о получении глюкозы в процессе фотосинтеза дает следующая формула:

2O + 6CO2 + Энергия → С6Н12O6 + 6O2, или

Вода + Углекислый газ + Энергия → Глюкоза + Кислород.

Образование сахаров при помощи фотосинтеза – основной процесс, за которым следует синтез остальных жизненно важных соединений из неорганических веществ. Зеленые водоросли при помощи своих ферментов получают из сахаров необходимое количество энергии и образуют белки, нуклеиновые кислоты, витамины и новые молекулы ферментов. Фотосинтезирующие зеленые водоросли – типичные автотрофные организмы, способные из минерального «сырья» получать и накапливать в своих клетках все наиболее важные для жизни вещества.

При длительных космических полетах зеленые водоросли могут быть использованы в качестве важной составной части меню космонавтов. «Наземные» опыты с культурой одноклеточных водорослей и с приготовлением из них питательных продуктов дали очень обнадеживающие результаты.

Кроме того, зеленые водоросли принимают участие в восстановлении состава воздуха в кабинах космических кораблей. Известно, что в процессе фотосинтеза освобождается кислород, используемый в другом важном жизненном процессе– дыхании. С химической точки зрения дыхание – это процесс, как бы обратный фотосинтезу: используются сахара и кислород, а освобождаются энергия, углекислый газ и вода:

С6Н12O6 + 6O2 → 6СO2 + 6Н2O + Энергия, или

Глюкоза + Кислород → Углекислый газ + Вода + Энергия.

Таким образом, космонавты поставляют водорослям углекислоту для фотосинтеза и получают от них взамен кислород для дыхания. Уже сконструированы различные модели аппаратов для культивирования водорослей в космических кораблях. Подобный обмен жизненно необходимых газов (кислорода и углекислого газа) между растениями и животными происходит на нашей планете со времен ее глубокой древности.

К самым интересным проблемам космических исследований, безусловно, относится вопрос о существовании жизни во Вселенной. До сих пор нам доподлинно известно всего лишь одно небесное тело, на котором есть жизнь. Это наша планета. После того как человек побывал на Луне, стало ясно, что там едва ли когда‑нибудь могла существовать жизнь. Мы знаем, что химический состав нашей Солнечной системы всюду, по существу, один и тот же. Исходя из этого, мы можем предполагать, что и внеземные живые организмы (некоторые ученые называют их экзобиотами) должны обладать биохимическими и физиологическими свойствами, сходными со свойствами земных организмов. Поэтому и считают, что жизнь может существовать прежде всего на таких небесных телах (планетах), где есть основные условия жизни: вода в жидком состоянии, благоприятная температура поверхности планеты, атмосфера, качественно схожая с земной, достаточное количество света как источника энергии для фотосинтеза. Такие условия в нашей Солнечной системе имеются отчасти на Марсе, в связи с чем некоторые ученые полагают, что жизнь, хотя бы ее низшие формы, возможна на этой планете.

На Земле мы найдем микробов в каждом комочке почвы, в движимых воздушных массах; они живут в полярных областях и в тропиках, на высокогорных вершинах и в глубинах океанов. Не исключено, что и на других планетах, где возможна жизнь, есть свой особый состав микроорганизмов, представляющих низшие формы жизни. Поэтому при изучении образцов, доставленных с иных планет, следует применять и микробиологические методы.

Но тут неизбежен один коварный вопрос: будут ли микробы, найденные в инопланетных образцах, действительно внеземными существами? Очень важно избежать заноса на иные планеты земных микробов или загрязнения образцов, взятых с этих планет, «нашими» микроорганизмами, которые мы ошибочно можем принять за внеземные.

Кроме того, здесь кроется и другая немалая опасность. Представим себе какую‑нибудь планету, на которой существует жизнь. На нее прибывает посланный с Земли космический корабль, и в нем находятся «безбилетные пассажиры» – земные микробы. Попадая в подходящие условия, они начинают размножаться. Из каждой бактериальной клетки через 20–30 мин возникают две новые. С помощью ветра и водных течений самые обыкновенные бактерии могут завладеть планетой, по величине близкой к размерам нашей Земли, всего за какие‑нибудь несколько недель. Это, безусловно, приведет к резким изменениям в жизни планеты. Многие микробы могут оказаться болезнетворными, и нельзя исключать возможность, что они выживут на этой «живой» планете различные эпидемии. Существует опасность и обратного порядка. Инопланетные микроорганизмы, попавшие в качестве нежелательных пассажиров – «зайцев» – в корабль, вернувшийся на Землю, могут стать серьезной угрозой для нашей планеты.

О возможности жизни на Венере среди ученых существуют различные точки зрения. На этой планете есть атмосфера, в составе которой удалось обнаружить углекислый газ, азот и другие газы, а недавно обнаружили и воду. Температура на поверхности Венеры гораздо выше, чем на Земле; по некоторым данным, она превышает 300 °C[17]. Такая температура слишком высока для того, чтобы на ней была возможна жизнь.

Недавно в журнале Science появилась интересная статья о возможностях заселения Венеры. Приведем основные мысли, высказанные в этой статье.

Для освоения Венеры высшими земными организмами ее необходимо соответствующим образом подготовить: снизить температуру поверхности планеты и повысить содержание кислорода в атмосфере. Для этого нужно подыскать организмы, способные существовать не непосредственно на ее поверхности, а на высоте нескольких километров, где находится пояс умеренных температур. Здесь процесс фотосинтеза мог бы протекать по основной схеме, причем источником кислорода служила бы вода. Со временем клетки этих организмов опустились бы в нижние слои атмосферы, где под влиянием высоких температур происходило бы разложение органических соединений, таких, как сахара. Схема этого процесса выглядела бы так:

С6Н12O6 + Тепловая энергия → 6С + 6Н2O, или

Сахара + Тепловая энергия → Углерод + Вода.

При этом содержание углекислого газа в атмосфере понижалось бы, запасы воды обновлялись, а количество кислорода – повышалось. Нам известны организмы, способные выполнить подобное задание. Это фото‑синтезирующие одноклеточные сине‑зеленые водоросли. Некоторые из них живут на Земле в горячих источниках при температуре 80 °C. Другие виды наземных сине‑зеленых водорослей, азотфиксирующие, могли бы выполнить еще одну задачу на Венере: связывать азот из атмосферы и получать с его помощью белки и все остальные жизненно важные азотсодержащие органические вещества.

В упомянутой статье говорится о планах засылки на Венеру кораблей с подобным экипажем. За счет снижения в атмосфере содержания углекислого газа можно было бы устранить и так называемый парниковый эффект, который является причиной высоких температур на поверхности планеты. Со временем этот процесс можно было бы приостановить во избежание чрезмерного понижения температуры, в результате которого прекратились бы разложение органических соединений на поверхности планеты и вышеописанные реакции.

 

 


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.034 с.