Метрологическое обеспечение. — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Метрологическое обеспечение.

2020-11-19 160
Метрологическое обеспечение. 0.00 из 5.00 0 оценок
Заказать работу

Газовый анализ

 

Это качественное обнаружение и количественное определение компонентов газовых смесей. Газовый анализ может проводиться, так по лабораторным методикам, так как с помощью специальных газоанализаторов. Как правило, методы газового анализа основаны на измерении физических параметров и свойств среды (например, электрической проводимости, магнитной восприимчивости, теплопроводности, оптической плотности, коэффициента рассеяния и так далее) значения которых зависят от концентраций определяемых компонентов. Существуют избирательные и неизбирательные методы измерения. В неизбирательных методах проводится измерение свойств пробы (например, плотности или теплопроводности), которые зависят от относительного содержания всех ее компонентов пробы. Поэтому такие методы могут применяться для анализа бинарных и псевдобинарных газовых смесей, в которых варьируется содержание только определяемого компонента, а соотношение концентраций остальных компонентов не изменяется. В избирательных методах измеряемое свойство пробы зависит преимущественного от содержания определяемого компонента.


Основные методы

 

По характеру измеряемого физического параметра методы газового анализа можно разделить на механические, акустические, тепловые, магнитные, оптические, ионизационные, масс-спектрометрические, электрохимические, полупроводниковые.

К механическим методам относится волюмоманометрический метод, основанный на измерении объема или давления газовой пробы после химического воздействия на нее, которое может заключаться, например, в последовательном поглощении компонентов анализируемого газа подходящими реактивами в поглотительных сосудах. Минимально определяемые концентрации (МОК) от 0,001 до 0,01 %.
К механическим методам также относят пневматический метод (аэростатический и аэродинамический). В первом случае измеряют плотность газовой смеси, во втором - зависящие от плотности и вязкости параметры таких процессов, как дросселирование газовых потоков, взаимодействие струй, вихреобразование и т.д. Эти методы применяют для анализа бинарных и псевдобинарных смесей, напр. для определения Н2 в воздухе, Н2 в этилене, СО2 в инертных газах, С12 в Н2 и т.д. МОК метода от 0,01 до 0,1 %.

Акустические методы основаны на измерении поглощения или скорости распространения звуковых и ультразвуковых волн в газовой смеси. Методы не избирательны и применяются, в частности, для определения СН4, О2, Н2 в бинарных и псевдобинарных смесях. МОК метода от 0,001 до 0,1 %.

Тепловые методы основаны на измерении теплопроводности газовой смеси (термокондуктометрический метод) или теплового эффекта радиации с участием определяемого компонента - (термохимический метод). Термокондуктометрическим методом находят содержание, напр., Не, СО2, Н2, СН4 в бинарных и псевдобинарных смесях (МОК от 0,01 до 0,1 %. Термохимический метод используют для избирательного определения СО, СН4, О2, Н2, контроля в воздухе взрывоопасных и пожароопасных примесей (смесей газообразных углеводородов, паров бензина и т.д.). Например, при определении метана его сжигают в присутствии катализатора (Pt и Pd на активном Аl2О3). Количество выделившегося тепла, пропорциональное концентрации СН4, с помощью терморезисторов преобразуют в электрический сигнал, который регистрируют. МОК метода от 0,001 до 0,01 %.

В магнитных методах измеряют физические характеристики газа, обусловленные магнитными свойствами определяемого компонента в магнитном поле. С их помощью контролируют содержание О2, отличающегося аномально большой парамагнитной восприимчивостью. Наиболее распространен термомагнитный метод, основанный на зависимости парамагнитной восприимчивости О2 от его концентрации при действии магнитного поля в условиях температурного градиента. МОК метода от 0,01 до 0,1 %.

В оптических методах измеряют оптическую плотность (абсорбционные методы), интенсивность излучения (эмиссионные методы), коэффициент преломления (рефрактометрический). Абсорбционные методы, основанные на измерении селективного поглощения ИК, УФ или видимого излучения контролируемым компонентом, применяют, например, для избирательного определения NO2, О3, H2S, SO2, CS2, формальдегида, фосгена, Сl2, паров Hg, Na, Pb и других. МОК метода от 0,00001 до 0,01 %. Широко используется оптикоакустический метод, основанный на пульсации давления газа в приемнике излучения при поглощении прерывистого потока излучения, прошедшего через анализируемый газ. Метод позволяет определять СО, СО2, СН4, NH3, SO2, ряд органических соединений. МОК метода от 0,001 до 0,01 %. Источники излучения в абсорбционных методах - лампы накаливания, ртутные, водородные, ртутно-кадмиевые, кадмиевые, нихромовые спирали.

По фотоколориметрическому оптическому методу предварительно проводят цветную реакцию контролируемого компонента с подходящим реагентом в газовой фазе, в индикаторном реакторе или на поверхности твердого носителя (в виде ленты, таблетки, порошка) и измеряют интенсивность окраски продуктов реакции. Метод применяют также для избирательного определения оксидов азота, СО, CS2, NH3, ацетилена, фосгена, формальдегида и др. МОК метода от 0,000001 до 0,001 %.

В эмиссионных оптических методах измеряют интенсивность излучения определяемых компонентов. Излучение можно возбудить электрическим разрядом (МОК метода от 0,0001 до 0,1 %), пламенем, светом и другими источниками (при использовании лазера МОК достигает 0,0000001 до 0,000001 %). Эти методы применяют для количественного определения множества элементов и соединений.

В хемилюминесцентном методе измеряют интенсивность люминесценции, сопровождающей некоторые хим. реакции в газах. Метод применяют, в частности, для определения О3 и оксидов азота. Например, определение NO основано на его окислении озоном. МОК метода от 0,000001 до 0,0001 %.

Оптические методы, основанные на рассеянии света, получили развитие благодаря лазерной технике. Они применяются, в частности, при дистанционном контроле чистоты атмосферы для определения главным образом вредных примесей – органических соединений, оксидов азота, серы, углерода и т.д. МОК метода от 0,000001 до 0,1 %.

Рефрактометрический метод используется для определения СО2, СН4, ацетилена, SO2 и др. в бинарных и псевдобинарных смесях. МОК метода около 0,01 %. Интерферометрический оптический метод основан на измерении смещения интерференционных полос в результате изменения оптической плотности газовой смеси при изменении концентрации определяемого компонента. Применяется, напр., для определения СО2 и СН4 в воздухе. МОК метода около 0,01 %.

Ионизационные методы основаны на измерении электрической проводимости ионизованных газовых смесей. Ионизацию осуществляют радиоактивным излучением, электрическим разрядом, пламенем, УФ - излучением, на нагретой каталитически активной поверхности. Например, метод, основанный на измерении разницы сечений ионизации газов радиоактивным излучением, используют для анализа таких бинарных смесей, как Н2 - N2, N2 - CO2, а также некоторых углеводородов (МОК метода около 0,01%). Метод, основанный на ионизации органических соединений в водородном пламени, применяют для определения органических примесей в бинарных газовых смесях и воздухе (МОК метода около 0,00001 %).

Масс-спектрометрические методы, основанные на измерении масс ионизованных компонентов анализируемого газа (см. Mace-спектрометрия), применяют для определения инертных газов, О2, Н2, оксидов углерода, азота и серы, а также неорганических., органических и металлоорганических летучих соединений. МОК метода от 0,00001 до 0,001 %.

В электрохимических методах измеряют параметры системы, состоящей из жидкого или твердого электролита, электродов и определяемого компонента газовой смеси или продуктов его реакции с электролитом. Так, потенциометрический метод основан на зависимости потенциала индикаторного электрода от концентрации иона, полученного при растворении определяемого компонента в растворе; амперометрический - на зависимости между током и количеством определяемого компонента, прореагировавшего на индикаторном электроде; кондуктометрический - на измерении электропроводности растворов при поглощении ими определяемого компонента газовой смеси. Электрохимическими методами измеряют содержание примесей O2, CO, NO, NO2, SO2, H2S, H2, C12, NH3, O3 и др. МОК метода от 0,000001 до 0,0001 %.

В полупроводниковых методах измеряют сопротивление полупроводника (пленки или монокристалла), взаимодействующего с определяемым компонентом газовой смеси. Методы применяют для измерения содержания Н2, метана, пропана, О2, оксидов углерода и азота, галогенсодержащих соединений и др. МОК метода от 0,00001 до 0,001 %..

Среди методов газового анализа иногда выделяют так называемые комбинированные. К ним относятся методы, отличающиеся способами предварительного преобразования пробы (хроматография, изотопное разбавление), которые могут сочетаться с измерением различных физический параметров, а также многопараметрический вычислительный метод.

В хроматографических методах газового анализа разделение анализируемой смеси происходит при ее движении вдоль слоя сорбента. Наиболее часто применяют проявительный вариант, в котором исследуемый газ переносится через слой сорбента потоком газа - носителя, сорбирующегося хуже любого из компонентов анализируемой газовой смеси. Для измерения концентрации разделенных компонентов в газе - носителей применяют различные детекторы. Хроматографические методы обеспечивают анализ широкого круга органических и неорганических компонентов с МОК метода от 0,0001 до 0,01 %. Сочетание хроматографического разделения с предварит. концентрированием (криогенной адсорбцией, диффузией и др.) определяемых компонентов позволяет снизить значения МОК до метода от 0,0000001 до 0,000001 %.

В методе изотопного разбавления в анализируемую пробу вводят радиоактивные или, чаще, стабильные изотопы определяемого компонента и затем выделяют его из пробы вместе с добавкой. В случае радиоактивного изотопа концентрацию компонента рассчитывают по удельной радиоактивности выделенного компонента, в случае стабильных изотопов - по результатам масс-спектрометрического или спектрального анализа его изотопного состава. Применяется также метод, основанный на реакции между определяемым компонентом и радиоактивным реагентом. Образовавшееся соединение выделяют, измеряют его удельную активность, по значению которой находят концентрацию определяемого компонента. Методами изотопного разбавления измеряют содержание примесей О2, N2, H2, оксидов углерода и азота, СН4, С12 и др. МОК от метода от 0,0000001 до 0,1 %.

Многопараметрический вычислительный метод основан на совместном измерении ряда физических параметров смеси известного качестве состава и на решении с помощью ЭВМ системы уравнений, описывающих взаимосвязь измеряемых параметров с концентрациями определяемых компонентов. Одновременно можно измерять, например, оптическую плотность среды при различных длинах волн, эффективность ионизации газов и паров на каталитически активных поверхностях с разными температурами нагрева и т.д.


Типы веществ

Методы рентгеноспектрального анализа позволяют изучить химический состав вещества. Этот способ может применяться также как экспресс-метод неразрушающего контроля. В исследовании могут участвовать следующие типы веществ:

· металлы и сплавы;

· горные породы;

· стекло и керамика;

· жидкости;

· абразивные материалы;

· газы;

· аморфные вещества;

· полимеры и другие органические соединения;

· белки и нуклеиновые кислоты.

· Яндекс.Директ

Рентгеноспектральный анализ позволяет определить также следующие свойства материалов:

· фазовый состав;

· ориентацию и величину монокристаллов, коллоидных частиц;

· диаграммы состояния сплавов;

· атомную структуру и дислокацию кристаллической решетки;

· внутренние напряжения;

· коэффициент термического расширения и другие характеристики.

На основе этого метода в производстве используется рентгеновская дефектоскопия, которая позволяет обнаружить различные типы неоднородностей в материалах:

· раковины;

· инородные включения;

· поры;

· трещины;

· непровары сварных швов и другие дефекты.

Виды анализа

В зависимости от способа генерирования рентгеновских лучей различают следующие виды рентгеноспектрального анализа:

· Рентгенофлуоресцентный. Возбуждение атомов производится первичным рентгеновским излучением (высокоэнергетическими фотонами). Это длится около микросекунды, после чего они переходят в спокойное, основное положение. При этом излишек энергии испускается в виде фотона. Каждое вещество излучает эти частицы с определенным уровнем энергии, благодаря чему можно произвести его точную идентификацию.

· Рентгенорадиометрический. Возбуждение атомов вещества осуществляется гамма-излучением от радиоактивного изотопа.

· Электроннозондовый. Активация производится сфокусированным пучком электронов с энергией в несколько десятков кэВ.

· Анализ с ионным возбуждением (протонами или тяжелыми ионами).

Наиболее распространенным методом рентгеноспектрального анализа является флуоресцентный. Рентгеновское возбуждение при бомбардировке образца электронами называется прямым, а при облучении рентгеновскими лучами – вторичным (флуоресцентным).

Область применения

Рентгеноспектральный флуоресцентный анализ применяется в следующих целях:

· определение вредных примесей в нефти и нефтепродуктах (бензин, смазки и другие); тяжелых металлов и других опасных соединений в почве, воздухе, воде, пищевых продуктах;

· анализ катализаторов в химической промышленности;

· прецизионное определение периода кристаллической решетки;

· выявление толщины защитных покрытий неразрушающим методом;

· определение источников сырья, из которых изготовлен предмет;

· вычисление микрообъемов вещества;

· определение основных и примесных компонентов горных пород в геологии и металлургии;

· исследование объектов, представляющих культурно-историческую ценность (иконы, картины, фрески, украшения, посуда, украшения и прочие предметы из различных материалов), их датирование;

· определение состава для криминалистического анализа.

Подготовка проб

Для проведения исследования предварительно требуется подготовка проб. Они должны отвечать следующим условиям для рентгеноспектрального анализа:

· Однородность. Проще всего это условие можно обеспечить для жидких образцов. При расслоении раствора непосредственно перед проведением исследования его перемешивают. Для химических элементов в коротковолновой области излучения гомогенность достигается истиранием в порошок, а в длинноволновой – сплавлением с флюсом.

· Устойчивость к внешним воздействиям.

· Соответствие размерам пробозагрузочного устройства.

· Оптимальная шероховатость твердых образцов.

Так как жидкие пробы обладают рядом недостатков (испарение, изменение их объема при нагревании, выпадение осадка под действием рентгеновского излучения), то предпочтительнее для рентгеноспектрального анализа использовать сухое вещество. Порошковые образцы насыпают в кювету и прессуются. Кювету через переходник устанавливают в обойму.

Для количественного анализа порошковые пробы рекомендуется спрессовывать в таблетированный вид. Для этого вещество истирают до состояния мелкой пудры, а затем делают таблетки на прессе. Для закрепления рассыпчатых веществ их помещают на подложку из борной кислоты. Жидкости наливают в кюветы с помощью пипетки, проверяя при этом отсутствие пузырьков.

Подготовку образцов, выбор методики анализа и оптимального режима, подбор эталонов и построение по ним аналитических графиков осуществляется лаборантом рентгеноспектрального анализа, который должен знать основы физики, химии, устройство спектрометров и методику проведения исследования.

Качественный анализ

Определение качественного состава образцов проводится для выявления в них определенных химических элементов. Количественная оценка не проводится. Исследование производят в следующем порядке:

· приготовление образцов;

· подготовка спектрометра (его прогрев, установка гониометра, задание в программе диапазона длин волн, шага сканирования и время экспозиции);

· быстрое сканирование образца, запись полученных спектров в память компьютера;

· расшифровка полученного спектрального разложения.

· Яндекс.Директ

Интенсивность излучения в каждый момент сканирования отображается на мониторе ЭВМ в виде графика, по горизонтальной оси которого откладывается длина волн, а по вертикальной – интенсивность излучения. Программное обеспечение современных спектрометров позволяет автоматически расшифровать полученные данные. Результатом качественного рентгеноспектрального анализа является список линий химических веществ, которые удалось обнаружить в образце.

Погрешности

Часто могут возникать ложно идентифицированные химические элементы. Это связано со следующими причинами:

· случайные отклонения рассеянного тормозного излучения;

· линии рассеяния от материала анода, фоновое излучение;

· погрешности прибора.

Наибольшая неточность выявляется при изучении проб, в составе которых преобладают легкие элементы органического происхождения. При проведении рентгеноспектрального анализа металлов доля рассеянного излучения меньше.

Количественный анализ

Перед проведением количественного анализа требуется специальная настройка спектрометра – его градуировка с помощью стандартных образцов. Спектр исследуемого образца сравнивают со спектром, полученным от облучения калибровочных проб.

Точность определения химических элементов зависит от многих факторов, таких как:

· эффект межэлементного возбуждения;

· фоновый спектр рассеяния;

· разрешение прибора;

· линейность счетной характеристики спектрометра;

· спектр рентгеновской трубки и другие.

Этот метод сложнее и требует проведения аналитического исследования с учетом констант, определенных заранее экспериментально или теоретически.

Достоинства

К преимуществам рентгеноспектрального метода относятся:

· возможность неразрушающего исследования;

· высокая чувствительность и точность (определение содержания примесей до 10-3%);

· широкий диапазон анализируемых химических элементов;

· простота подготовки образцов;

· универсальность;

· возможность автоматической интерпретации и высокая производительность метода.

Недостатки

Среди недостатков рентгеноспектрального анализа выделяют следующие:

· повышенные требования по технике безопасности;

· необходимость индивидуальной градуировки;

· затрудненную интерпретацию химического состава при близком расположении характеристических линий некоторых элементов;

· необходимость изготовления анодов из редких материалов для уменьшения фонового характеристического излучения, влияющего на достоверность результатов. Яндекс.Директ

Психологические тесты идеально описывают внутреннее состояние человека. Причем довольно часто их прохождение не вызывает каких бы то ни было проблем. Получить нужную информацию легко. Человеку необходимо просто посмотреть на картинку в начале статьи и запомнить то, что бросилось в глаза в первую очередь. Сам тест расскажет, что вызывает у человека усталость в данный момент времени.

Белое лицо

Проблемы вызывает прежде всего рутина. Человек, заметивший первым белое лицо, погряз в куче мелких задач. Они отнимают много времени и сил. При этом отвлечение на незначительные дела приводит к более сложным последствиям. В итоге просто забывается основная мечта и глобальная задача. Лучше перераспределить время и энергию на решение более важных целей.

Два черных лица

Люди застряли в сложном любовном романе. Именно отношения сейчас и вызывают наибольшие проблемы и усталость. Пришла пора разрубить этот гордиев узел. Необходимо прийти к какому-то итогу, в противном случае ситуация будет повторяться с изрядной периодичностью. В итоге она может привести к жесткому эмоциональному выгоранию. Но в поисках выхода из тупика нужно прислушиваться и к сердцу, и к разуму. Внимательно проанализируйте ситуацию и примите какое-то конечное решение.

 

 

Газовый анализ

 

Это качественное обнаружение и количественное определение компонентов газовых смесей. Газовый анализ может проводиться, так по лабораторным методикам, так как с помощью специальных газоанализаторов. Как правило, методы газового анализа основаны на измерении физических параметров и свойств среды (например, электрической проводимости, магнитной восприимчивости, теплопроводности, оптической плотности, коэффициента рассеяния и так далее) значения которых зависят от концентраций определяемых компонентов. Существуют избирательные и неизбирательные методы измерения. В неизбирательных методах проводится измерение свойств пробы (например, плотности или теплопроводности), которые зависят от относительного содержания всех ее компонентов пробы. Поэтому такие методы могут применяться для анализа бинарных и псевдобинарных газовых смесей, в которых варьируется содержание только определяемого компонента, а соотношение концентраций остальных компонентов не изменяется. В избирательных методах измеряемое свойство пробы зависит преимущественного от содержания определяемого компонента.


Основные методы

 

По характеру измеряемого физического параметра методы газового анализа можно разделить на механические, акустические, тепловые, магнитные, оптические, ионизационные, масс-спектрометрические, электрохимические, полупроводниковые.

К механическим методам относится волюмоманометрический метод, основанный на измерении объема или давления газовой пробы после химического воздействия на нее, которое может заключаться, например, в последовательном поглощении компонентов анализируемого газа подходящими реактивами в поглотительных сосудах. Минимально определяемые концентрации (МОК) от 0,001 до 0,01 %.
К механическим методам также относят пневматический метод (аэростатический и аэродинамический). В первом случае измеряют плотность газовой смеси, во втором - зависящие от плотности и вязкости параметры таких процессов, как дросселирование газовых потоков, взаимодействие струй, вихреобразование и т.д. Эти методы применяют для анализа бинарных и псевдобинарных смесей, напр. для определения Н2 в воздухе, Н2 в этилене, СО2 в инертных газах, С12 в Н2 и т.д. МОК метода от 0,01 до 0,1 %.

Акустические методы основаны на измерении поглощения или скорости распространения звуковых и ультразвуковых волн в газовой смеси. Методы не избирательны и применяются, в частности, для определения СН4, О2, Н2 в бинарных и псевдобинарных смесях. МОК метода от 0,001 до 0,1 %.

Тепловые методы основаны на измерении теплопроводности газовой смеси (термокондуктометрический метод) или теплового эффекта радиации с участием определяемого компонента - (термохимический метод). Термокондуктометрическим методом находят содержание, напр., Не, СО2, Н2, СН4 в бинарных и псевдобинарных смесях (МОК от 0,01 до 0,1 %. Термохимический метод используют для избирательного определения СО, СН4, О2, Н2, контроля в воздухе взрывоопасных и пожароопасных примесей (смесей газообразных углеводородов, паров бензина и т.д.). Например, при определении метана его сжигают в присутствии катализатора (Pt и Pd на активном Аl2О3). Количество выделившегося тепла, пропорциональное концентрации СН4, с помощью терморезисторов преобразуют в электрический сигнал, который регистрируют. МОК метода от 0,001 до 0,01 %.

В магнитных методах измеряют физические характеристики газа, обусловленные магнитными свойствами определяемого компонента в магнитном поле. С их помощью контролируют содержание О2, отличающегося аномально большой парамагнитной восприимчивостью. Наиболее распространен термомагнитный метод, основанный на зависимости парамагнитной восприимчивости О2 от его концентрации при действии магнитного поля в условиях температурного градиента. МОК метода от 0,01 до 0,1 %.

В оптических методах измеряют оптическую плотность (абсорбционные методы), интенсивность излучения (эмиссионные методы), коэффициент преломления (рефрактометрический). Абсорбционные методы, основанные на измерении селективного поглощения ИК, УФ или видимого излучения контролируемым компонентом, применяют, например, для избирательного определения NO2, О3, H2S, SO2, CS2, формальдегида, фосгена, Сl2, паров Hg, Na, Pb и других. МОК метода от 0,00001 до 0,01 %. Широко используется оптикоакустический метод, основанный на пульсации давления газа в приемнике излучения при поглощении прерывистого потока излучения, прошедшего через анализируемый газ. Метод позволяет определять СО, СО2, СН4, NH3, SO2, ряд органических соединений. МОК метода от 0,001 до 0,01 %. Источники излучения в абсорбционных методах - лампы накаливания, ртутные, водородные, ртутно-кадмиевые, кадмиевые, нихромовые спирали.

По фотоколориметрическому оптическому методу предварительно проводят цветную реакцию контролируемого компонента с подходящим реагентом в газовой фазе, в индикаторном реакторе или на поверхности твердого носителя (в виде ленты, таблетки, порошка) и измеряют интенсивность окраски продуктов реакции. Метод применяют также для избирательного определения оксидов азота, СО, CS2, NH3, ацетилена, фосгена, формальдегида и др. МОК метода от 0,000001 до 0,001 %.

В эмиссионных оптических методах измеряют интенсивность излучения определяемых компонентов. Излучение можно возбудить электрическим разрядом (МОК метода от 0,0001 до 0,1 %), пламенем, светом и другими источниками (при использовании лазера МОК достигает 0,0000001 до 0,000001 %). Эти методы применяют для количественного определения множества элементов и соединений.

В хемилюминесцентном методе измеряют интенсивность люминесценции, сопровождающей некоторые хим. реакции в газах. Метод применяют, в частности, для определения О3 и оксидов азота. Например, определение NO основано на его окислении озоном. МОК метода от 0,000001 до 0,0001 %.

Оптические методы, основанные на рассеянии света, получили развитие благодаря лазерной технике. Они применяются, в частности, при дистанционном контроле чистоты атмосферы для определения главным образом вредных примесей – органических соединений, оксидов азота, серы, углерода и т.д. МОК метода от 0,000001 до 0,1 %.

Рефрактометрический метод используется для определения СО2, СН4, ацетилена, SO2 и др. в бинарных и псевдобинарных смесях. МОК метода около 0,01 %. Интерферометрический оптический метод основан на измерении смещения интерференционных полос в результате изменения оптической плотности газовой смеси при изменении концентрации определяемого компонента. Применяется, напр., для определения СО2 и СН4 в воздухе. МОК метода около 0,01 %.

Ионизационные методы основаны на измерении электрической проводимости ионизованных газовых смесей. Ионизацию осуществляют радиоактивным излучением, электрическим разрядом, пламенем, УФ - излучением, на нагретой каталитически активной поверхности. Например, метод, основанный на измерении разницы сечений ионизации газов радиоактивным излучением, используют для анализа таких бинарных смесей, как Н2 - N2, N2 - CO2, а также некоторых углеводородов (МОК метода около 0,01%). Метод, основанный на ионизации органических соединений в водородном пламени, применяют для определения органических примесей в бинарных газовых смесях и воздухе (МОК метода около 0,00001 %).

Масс-спектрометрические методы, основанные на измерении масс ионизованных компонентов анализируемого газа (см. Mace-спектрометрия), применяют для определения инертных газов, О2, Н2, оксидов углерода, азота и серы, а также неорганических., органических и металлоорганических летучих соединений. МОК метода от 0,00001 до 0,001 %.

В электрохимических методах измеряют параметры системы, состоящей из жидкого или твердого электролита, электродов и определяемого компонента газовой смеси или продуктов его реакции с электролитом. Так, потенциометрический метод основан на зависимости потенциала индикаторного электрода от концентрации иона, полученного при растворении определяемого компонента в растворе; амперометрический - на зависимости между током и количеством определяемого компонента, прореагировавшего на индикаторном электроде; кондуктометрический - на измерении электропроводности растворов при поглощении ими определяемого компонента газовой смеси. Электрохимическими методами измеряют содержание примесей O2, CO, NO, NO2, SO2, H2S, H2, C12, NH3, O3 и др. МОК метода от 0,000001 до 0,0001 %.

В полупроводниковых методах измеряют сопротивление полупроводника (пленки или монокристалла), взаимодействующего с определяемым компонентом газовой смеси. Методы применяют для измерения содержания Н2, метана, пропана, О2, оксидов углерода и азота, галогенсодержащих соединений и др. МОК метода от 0,00001 до 0,001 %..

Среди методов газового анализа иногда выделяют так называемые комбинированные. К ним относятся методы, отличающиеся способами предварительного преобразования пробы (хроматография, изотопное разбавление), которые могут сочетаться с измерением различных физический параметров, а также многопараметрический вычислительный метод.

В хроматографических методах газового анализа разделение анализируемой смеси происходит при ее движении вдоль слоя сорбента. Наиболее часто применяют проявительный вариант, в котором исследуемый газ переносится через слой сорбента потоком газа - носителя, сорбирующегося хуже любого из компонентов анализируемой газовой смеси. Для измерения концентрации разделенных компонентов в газе - носителей применяют различные детекторы. Хроматографические методы обеспечивают анализ широкого круга органических и неорганических компонентов с МОК метода от 0,0001 до 0,01 %. Сочетание хроматографического разделения с предварит. концентрированием (криогенной адсорбцией, диффузией и др.) определяемых компонентов позволяет снизить значения МОК до метода от 0,0000001 до 0,000001 %.

В методе изотопного разбавления в анализируемую пробу вводят радиоактивные или, чаще, стабильные изотопы определяемого компонента и затем выделяют его из пробы вместе с добавкой. В случае радиоактивного изотопа концентрацию компонента рассчитывают по удельной радиоактивности выделенного компонента, в случае стабильных изотопов - по результатам масс-спектрометрического или спектрального анализа его изотопного состава. Применяется также метод, основанный на реакции между определяемым компонентом и радиоактивным реагентом. Образовавшееся соединение выделяют, измеряют его удельную активность, по значению которой находят концентрацию определяемого компонента. Методами изотопного разбавления измеряют содержание примесей О2, N2, H2, оксидов углерода и азота, СН4, С12 и др. МОК от метода от 0,0000001 до 0,1 %.

Многопараметрический вычислительный метод основан на совместном измерении ряда физических параметров смеси известного качестве состава и на решении с помощью ЭВМ системы уравнений, описывающих взаимосвязь измеряемых параметров с концентрациями определяемых компонентов. Одновременно можно измерять, например, оптическую плотность среды при различных длинах волн, эффективность ионизации газов и паров на каталитически активных поверхностях с разными температурами нагрева и т.д.


Метрологическое обеспечение.

 

Достоверность газоаналитических измерений гарантируется комплексом методов и средств метрологического обеспечения. Неполнота сведений о зависимостях между значением физического параметра среды и концентрацией определяемого компонента, влияние остальных компонентов среды и условий измерения приводят к погрешности анализа. Поэтому, в каждом конкретном случае, необходимо предварительное метрологические исследование с целью аттестации методик или нормирования метрологических характеристик газоанализаторов. Одна из задач метрологического исследования - выявление погрешности, возникающей вследствие неполного соответствия между реальной анализируемой смесью и ее моделью, используемой при разработке методик и создании газоанализаторов. В ходе метрологических исследований используют аттестованные газовые смеси и образцовые средства измерения. Выбор метода аттестации зависит от концентрации и свойств определяемого и сопутствующих компонентов. Аттестацию газовых смесей выполняют, напр., по методикам, предусматривающим измерение расхода, давления и объема смешиваемых чистых газов, определение отношения масс компонентов смеси (с помощью аналитических газовых весов), установления их точек замерзания и т.д. Используют также предварительно аттестованные с большей точностью методики химического анализа. В тех случаях, когда аттестовать смеси с высокой точностью по результатам косвенных измерений их свойств практически невозможно, применяют стандартные образцы газовых смесей. При этом для аттестации синтезированных газовых смесей в качестве стандартных образцов на высшем уровне точности пользуются результатами экспериментов, проведенных в нескольких лабораториях.

Рентгеноспектральный анализ занимает важное место среди всех способов исследования материалов. Он широко используется в различных областях техники благодаря возможности экспресс-контроля без разрушения исследуемого образца. Время определения одного химического элемента может составлять всего несколько секунд, практически нет ограничений по виду исследуемых веществ. Анализ проводится как в качественном, так и в количественном плане.


Поделиться с друзьями:

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.114 с.