Горелки с принудительной подачей воздуха — КиберПедия 

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Горелки с принудительной подачей воздуха

2020-08-21 203
Горелки с принудительной подачей воздуха 0.00 из 5.00 0 оценок
Заказать работу

 

 

    

 

                                     

                                                   

 

Горелки с принудительной подачей воздуха широко применяют в различных тепловых устройствах коммунальных и промышленных предприятий.

По принципу действия эти горелки подразделяются на горелки с предварительным смешением газа и топлива и на горелки без предварительной подготовки газовоздушной смеси. Горелки обоих типов могут работать на природном, коксовом, доменном, смешанном и других горючих газах низкого и среднего давления. Диапазон рабочего регулирования — 0,1...5000 м3/ч.

Воздух в горелки подается центробежными или осевыми вентиляторами низкого и среднего давления. Вентиляторы могут быть установлены на каждой горелке или один вентилятор на определенную группу горелок. При этом, как правило, весь первичный воздух подается вентиляторами, вторичный же практически не влияет на качество горения и определяется только подсосом воздуха в топочную камеру через неплотности топочной арматуры и лючки.

Преимуществами горелок с принудительной подачей воздуха являются: возможность применения в топочных камерах с различным противодавлением, значительный диапазон регулирования тепловой мощности и соотношения газ — воздух, сравнительно небольшие размеры факела, незначительный шум при работе, простота конструкции, возможность предварительного подогрева газа или воздуха и использования горелок большой единичной мощности.

Горелки низкого давления применяют при расходе газа 50... 100 м3/ч, при расходе 100...5000 целесообразно испельзовать горелки среднего давления.

Давление воздуха в зависимссти от конструкции горелки и необходимой тепловой мощности принимается равным 0,5... 5кПа.

Химического недожога можно избежать при коэффициенте избытка воздуха 1...1Д. Верхний предел регулирования тепловой мощности лимитируется давлением воздуха, создаваемым вентилятором. При необходимости изменения тепловой нагрузки горелки изменяют одновременно давление газа и воздуха. Поэтому при автоматической регулировке устанавливают регуляторы давления газа и воздуха, поскольку давление воздуха в зависимости от давления газа в этих горелках не регулируется.

Расход газа и воздуха может регулироваться вручную кранами или задвижками в зависимости от качества сгорания топлива и необходимой длины факела, равной 0,3...3 м.

Для лучшего перемешивания топливно-воздушной смеси в большинство горелок газ подается небольшими струями под различным углом к потоку первичного дутьевого воздуха. С целью интенсификации смесеобразования потоку воздуха придают турбулентное движение при помощи специально установленных завихряющих лопаток, тангенциальных направляющих и т.д.

К наиболее распространенным горелкам с принудительной подачей воздуха внутреннего смешения относят горелки с расходом газа до 5000 м3/ч и более. В них можно обеспечить заранее заданное качество подготовки топливно-воздушной смеси до ее подачи в топочную камеру.

В зависимости от конструкции горелки процессы смешения топлива и воздуха могут быть различными: первый — подготовка топливно-воздушной смеси непосредственно в камере смешения горелки, когда в топку поступает готовая газовоздушная смесь, второй — когда процесс смешения начинается в горелке, а заканчивается в топочной камере. Во всех случаях скорость истечения газовоздушной смеси разна 16...60 м/с. Интенсификации смесеобразования газа и воздуха достигают путем струйной подачи газа, применения регулируемых лопаток, тангенциального подвода воздуха и пр. При струйной подаче газа используют горелки с центральной подачей газа (от центра горелки к периферии) и с периферийной.

Максимальное давление воздуха на входе в горелку — 5 кПа. Она может работать при противодавлении и разрежении в топочной камере. В данных горелках в отличие от горелок внешнего смешения пламя менее светящееся и относительно небольших размеров. В качестве стабилизаторов наиболее часто применяют керамические тоннели. Однако могут быть использованы все рассмотренные выше способы.

Горелка типа ГНП с принудительной подачей воздуха и центральной подачей газа, сконструированная специалистами института Теплопроект, предназначена для использования в топочных устройствах со значительными тепловыми напряжениями. В этих горелках предусмотрено закручивание потока воздуха с помощью лопаток. В комплект горелки входят два сопла: сопло типа А, применяемое для короткофа-кельного сжигания газа с 4...6 отверстиями для выхода газа, направленными перпендикулярно или под углом 45° к потоку воздуха, и сопло типа Б, используемое для получения удлиненного факела и имеющее одно центральное отверстие, направленное параллельно потоку воздуха. В последнем случае предварительное смешение газа и воздуха происходит значительно хуже, что приводит к удлинению факела.

Стабилизация факела обеспечивается применением огнеупорного тоннеля из шамотного кирпича класса А. Горелки могут работать на холодном и подогретом воздухе. Коэффициент избытка воздуха — 1,05. Горелки такого типа применяют в паровых котлах, хлебопекарной промышленности.

Двухпроводная газомазутная горелка ГМГ предназначена для сжигания природного газа или малосернистых видов жидкого топлива типа дизельного, бытового, мазутов флотских Ф5, Ф12 и пр. Допускается совместное сжигание газа и жидкого топлива.

Газовое сопло горелки имеет два ряда отверстий, направленных под углом 90° друг к другу. Отверстия на боковой поверхности сопла позволяют подавать газ в закрученный поток вторичного дутьевого воздуха, отверстия на торцевой поверхности — в закрученный поток первичного воздуха.

ГАЗОВАЯ АРМАТУРА

 

ОБЩИЕ ПОЛОЖЕНИЯ

Выбор арматуры.

С помощью газовой арматуры осуществляется включение, отключение, изменение расхода, давления или направления газового потока, а также удаление газов.

При выборе газовой арматуры необходимо учитывать свойства металлов и сплавов, из которых она изготовлена:

¾ природный газ не воздействует на черные металлы, поэтому газовая арматура может быть изготовлена из стали и чугуна;

¾ из-за более низких механических свойств чугунная арматура может применяться при давлениях не более 1,6 МПа;

¾ при наличии в природных или сжиженных газах сероводорода он может воздействовать на бронзу и другие медные сплавы. Поэтому арматуру с бронзовыми уплотнительными кольцами устанавливать на газопроводах не рекомендуется. Вместе с тем необходимо учитывать, что если уплотнительные поверхности седла и затвора газовой арматуры выполнены из черных металлов (т. е. без вставных колец из нержавеющей стали либо из цветных металлов), то они быстро изнашиваются и корродируют;

¾ при существующих допустимых нормах содержания сероводорода в газе (2 г на каждые 100 м3) последний практически не воздействует на медные сплавы. Поэтому арматура для внутри-домового газового оборудования может выполняться из медных сплавов.

¾ для арматуры, отличающейся особой надежностью, необходимо применять вставные уплотнительные кольца из нержавеющей стали.

 

По назначению газовую арматуру разделяют на:

¾ запорную — для периодических герметичных отключений отдельных участков газопровода, аппаратуры и приборов;

¾ регулирующую — для снижения давления и поддержания его в заданных пределах;

¾ предохранительную — для предупреждения возможности повышения давления газа сверх установленных пределов;

¾ арматуру обратного действия — для предотвращения движения газа в обратном направлении;

¾ аварийную и отсечную — для автоматического прекращения движения газа к аварийному участку при нарушении заданного режима.

Маркировка арматуры. Вся арматура, применяемая в газовом хозяйстве, стандартизована. Шифр каждого изделия арматуры состоит из четырех частей: на первом стоит номер, обозначающий вид арматуры; на втором — условное обозначение материала, из которого изготовлен корпус арматуры; на третьем — порядковый номер изделия; на четвертом — условное обозначение материала уплотнительных колец.

В обозначении, например, крана типа ПБЮбк цифра 11 указывает вид арматуры (кран); Б — материал корпуса (латунь); 10 — порядковый номер изделия; бк — тип уплотнения (без колец).

Одной из величин, определяющих работу арматуры, является давление рабочей среды, которое подразделяют на условное, рабочее и пробное по ГОСТ 356—80.

Под условным (номинальным) понимают наибольшее избы

точное давление при температуре среды 20 °С, при котором

обеспечивается длительная работа соединений трубопровода и арматуры

Под пробным давлением следует понимать избыточное давление, при котором производят гидравлическое испытание арматуры и деталей трубопровода на прочность и плотность водой при температуре нге менее 5 и не более 70 °С, если в нормативно-технической документации не указана конкретная температура. Предельные отклонения пробного давления не должны превышать ±5 %.

Под рабочим понимают наибольшее избыточное давление, при котором обеспечивается заданный режим эксплуатации арматуры и деталей трубопровода.

Снижение допускаемого рабочего давления зависит в основном от прочностных свойств материала деталей арматуры: чем выше рабочая температура, тем ниже максимальное рабочее давление при одном и том же условном.

Условные обозначения материала корпуса арматуры из стали: углеродистой — с, легированной — лс, коррозиовностойкой (нержавеющей) — нж; из чугуна — серого — ч, ковкого — кч; из латуни, бронзы — Б; из винипласта — вп; из пластмассы (кроме винипласта) — п.

Проверка герметичности. Пригодность арматуры для эксплуатации подтверждается гидравлическим испытанием на прочность и плотность металла и на герметичность соединений. Гидравлическому испытанию арматура подвергается в процессе изготовления деталей до и после их механической обработки, а также в готово-м виде. Такие испытания проводятся при ремонте арматуры, а также перед установкой на трубопровод (на заготовительных предприятиях монтажных организаций).

Детали арматуры испытывают на прочность и плотность при пробном давлении, когда из полости арматуры полностью удален воздух. Арматуру обычно испытывают при 20 °С с заглушеи-ными проходными отверстиями. Литые детали простукивают свинцовым или медным молотком массой 0,8... 1 кг.

Арматуру с незаваренными трещинами и раковинами, забоинами и окалиной на торцевых плоскостях под прокладку, сварочных фасках концов патрубков и расточках под подкладные кольца, а также с забоинами и срывами резьбы на болтах гидравлическому испытанию не подвергают.

Испытанием на герметичность определяется степень прилегания уплотнительных поверхностей (герметичность) тарелки и седла затвора.

ЗАПОРНЫЕ УСТРОЙСТВА

 

Запорная арматура, устанавливаемая на газопроводах, должна обеспечивать: герметичность отключения; минимальные потери давления в открытом положении, особенно на газопроводах низкого давления; удобство обслуживания и ремонта; быстроту открытия и закрытия, которые при ручном управлении должны производиться с небольшим усилием.

К запорным устройствам относят трубопроводную арматуру (краны, задвижки, вентили), гидравлические задвижки и затворы, а также быстродействующие (отсечные) устройства с пневматическим или электромагнитным приводом.

 

                                     

Арматура, устанавливаемая на газопроводах, должна быть предназначена для работ в газовой среде. На газопроводах низкого давления в качестве запорных устройств допускается применять гидрозатворы.

Поворотные краны должны иметь ограничители поворота и указатели положений «Открыто» и «Закрыто». На кранах с диаметром условного прохода до 80 мм должна быть риска, указывающая направление движения газа в пробке.

Привод к затворам запорной арматуры может быть ручным, механическим (устройство оборудуется штурвалом и зубчатой передачей к штоку затвора); пневматическим или гидравлическим (оборудуется цилиндром, который шарнирно соединяется со штоком затвора); электрическим (устанавливается электродвигатель и передающий механизм к штоку затвора) и электромагнитным (устройство оборудуется электромагнитом, сердечник которого шарнирно связывается со штоком затвора).

На газопроводах промышленных и коммунально-бытовых предприятий в качестве запорных устройств наиболее часто используют краны и задвижки, реже — вентили с ручным приводом, гидрозатворы и гидравлические задвижки. В связи с автоматизацией процессов сжигания газа все шире применяют вентили и клапаны с электромагнитным приводом. Электрооборудование приводов и других элементов должно выполняться в соответствии с Правилами устройства электроустановок.

Арматура из серого чугуна применяется при давлении до 0,6 МПа и температуре наружного воздуха до —35 °С. Арматура из ковкого чугуна, углеродистой и легированной стали применяется при давлении до 1,6 МПа и температуре наружного воздуха не ниже —40 °С. При вышеуказанном давлении может применяться арматура из бронзы и латуни, но при температуре наружного воздуха не ниже — 35 °С.

 

ПРЕДОХРАНИТЕЛЬНАЯ АРМАТУРА

 

Предохранительные устройства предназначаются для предупреждения повышения давления выше заданной величины и предотвращения движения среды в направлении, обратном заданному. В качестве предохранительной арматуры используются обратные, запорные, сбросные, скоростные клапаны.

Предохранительные запорные клапаны (ПЗК) применяются для автоматического прекращения подачи газа к потребителям в случае изменения его давления в контролируемой точке сверх заданных пределов. Они устанавливаются в ГРП (ГРУ), на газовых разводках, перед горелками газопотребляющих агрегатов.

Точность срабатывания ПЗК должна составлять ±5 % заданных контролируемых величин давления для ПЗК, установленных в ГРП, и ±10 для ПЗК в шкафных ГРП (ГРУ). В основном для ГРП (ГРУ) и крупных газопотребляющих агрегатов используются предохранительные запорные клапаны ПКВ и ПКН с диаметрами условного прохода 50, 80, 100 и 200 мм. В мембране клапана ПКВ применена более жесткая пружина, что позволяет использовать его на газопроводах высокого давления.

В шкафных ГРУ используется малогабаритный запорно-пре-дохранительный клапан ПКК-40, рассчитанный на входное давление 0,6 МПа.

Клапаны КПВ можно настраивать на срабатывание при повышении давления в контролируемой точке до 0,72 МПа и, следовательно, поддерживать при необходимости в газопроводах давление, близкое к 0,6 МПа.

Предохранительные сбросные устройства (ПСУ) предназначены для удаления в атмосферу некоторого избыточного объема газа на газопроводе после регулятора с целью предотвращения повышения давления выше заданного допустимого предела. Предохранительные сбросные клапаны, в том числе встроенные в регуляторы давления, должны обеспечивать начало открытия при превышении установленного максимального рабочего давления не более чем на 5 % и полное открытие при превышении этого давления не более чем на 15 %.

Плотность закрытого затвора ПСУ должна соответствовать 1 классу герметичности.

Подводящий к ПСУ газопровод должен иметь минимальное количество поворотов, диаметр не менее 20 мм и присоединяться к участку газопровода после регулятора, как правило, следом за расходомером.

На сбросном трубопроводе целесообразно установить штуцер с пробкой или краном для подключения газоанализатора или газоиндикатора, а при их отсутствии — для отбора проб в стеклянный или резиновый сосуд. Диаметр сбросного трубопровода от ПСУ должен быть не меньше диаметра выходного патрубка ПСУ и выводиться наружу в место, где обеспечиваются условия для безопасного рассеивания газа (не менее чем на 1 м выше карниза здания), а также оборудоваться устройством (оголовком), исключающим возможность попадания в трубопровод атмосферных осадков. Довольно часто вместо специального оголовка конец сбросного трубопровода просто изгибают, направляя устье горизонтально или вертикально вниз. Это недопустимо, так как приводит к заполнению газом здания ГРП.

На газопроводах среднего (более 0,05 МПа) и высокого давления используют сбросные предохранительные полноподъемные клапаны ССПК-4Р с рычагом для контрольной продувки. Клапаны предназначены для сброса газа непосредственно в атмосферу или через сбросной трубопровод, гидравлическое сопротивление которого не должно быть более 0,1 рабочего давления. В зависимости от давления настройки клапан комплектуют пружиной.

Входной патрубок клапана соединяют с контролируемым участком газопровода после регулятора. Настройка клапана на открытие регулируется сжатием пружины. В крышке размещено отжимное устройство, которое позволяет производить контрольную продувку: при нажиме на наружный рычаг поворачивается валик, жестко соединенный с ним кулачок отводит вверх гайку, навернутую на резьбу штока. При подъеме штока и плунжера осуществляется принудительная продувка клапана. Согласно заводской инструкции, принудительный подъем плунжера рычагом следует производить при давлении на 10 % меньше рабочего. При отсутствии давления во входном патрубке контрольный подъем не допускается.

Предохранительно-сбросной мембранно-пружинный клапан (ПСК) устанавливают на газопроводах низкого и среднего давлений. Газ из газопровода после регулятора поступает на мембрану 3 клапана ПСК. Если давление газа больше давления пружины 2 снизу, то мембрана отходит вниз, клапан открывается, и газ идет на сброс. Как только давление газа станет меньше усилия пружины, клапан закрывается. Сжатие пружины регулируют винтом 1 в нижней части корпуса.

Для повышения надежности работы ПСК при его сборке необходимо: очистить клапанное устройство от механических частиц и убедиться, что на кромке седла и на уплотняющей резине золотника нет царапин или забоев; добиться соосности расположения золотника сбросного клапана с центральным отверстием мембраны.

Пружинные ПСУ типа ППК-4, СППК-4, СППК-4Р монтируют на газопроводах среднего или высокого давления в вертикальном положении. Диаметр сбросного трубопровода должен быть не менее диаметра выпускного патрубка. Клапаны имеют набор пружин и могут применяться в большом диапазоне давлений

Гидравлический предохранитель (ГП) конструктивно представляет собой стальной сварной цилиндр с патрубками, занолненный жидкостью. Один конец первого патрубка соединен с газопроводом, а другой проходит через сосуд почти до дна. Второй патрубок соединен с трубопроводом, сбрасывающим газ в атмосферу. Высота столба жидкости определяет давление, при котором начинается сброс газа из газопровода.

При повышении давления газа сверх установленного предела газ прорывается через жидкость (барботирует) в верхнюю часть цилиндра и по второму патрубку сбрЬсывается в атмосферу.

В качестве запорной жидкости при положительной температуре используют воду, при отрицательной — веретенное масло или глицерин.

Для уменьшения испарения воды на поверхность наливают тонкий слой масла.

Недостатком ГП является его громоздкость, а также ограниченная применяемость — только Б системах газопроводов низкого или среднего давления (0,002...0,02 МПа).

Обратные клапаны применяются в системах газоснабжения сжиженного газа на ГНС, ГНП, в автомобильных цистернах сжиженного газа. Затвор в этих клапанах открывается под действием потока среды, а при изменении его направления на обратное — закрывается.

Обратные клапаны могут быть поворотными (захлопочного типа) и подъемными (вентильного типа).

Скоростные клапаны являются защитными устройствами, предохраняющими от слишком больших расходов сжиженного газа при разрыве трубопроводов или арматуры. Они рассчитаны на пропуск номинального расхода газа или жидкости в любом направлении и закрытие при слишком большом расходе в одном направлении. Наличие скоростных клапанов в системе газопроводов автоцистерны или емкостей требует плавного открытия вентилей, так как при резком их открывании скоростной клапан может закрываться.

РЕГУЛЯТОРЫ ДАВЛЕНИЯГАЗА

 

Регуляторы давления снижают и поддерживают постоянное давление газа в заданных пределах путем изменения расхода протекающего через регулирующий клапан газа.

По принципу действия регуляторы давления подразделяются на регуляторы непосредственного действия (прямого) и регуляторы непрямого действия, причем как первые, так и вторые могут быть прерывного и непрерывного действия.

В регуляторе непосредственного или прямого действия регулирующий орган находится под действием регулируемого параметра или прямо, или через зависимый параметр, и при изменении регулируемого параметра приводится в действие усилием, возникающим в чувствительном элементе регулятора и достаточным для перестановки регулирующего органа без какого-либо постороннего источника энергии.

В регуляторе непрямого действия (автоматический регулятор) чувствительный элемент воздействует на регулирующий орган посторонним самостоятельным источником энергии, которым могут служить воздух, газ, жидкость и т. п. При изменении величины регулируемого параметра усилие, возникающее в чувствительном элементе регулятора, приводит в действие лишь вспомогательное устройство.

Оба вида регуляторов состоят из регулирующего клапана, чувствительного (измерительного) и управляющего элементов.

В регуляторах непосредственного действия чувствительный и управляющий элементы являются составными частями привода регулирующего клапана и неотделимы от него. У регулятора прямого действия чувствительный и управляющий элементы — самостоятельные приборы, отделенные от регулирующего клапана.

 

Регуляторы непосредственного действия по сравнению с регуляторами непрямого действия обладают меньшей чувствительностью. Это объясняется тем, что клапан при изменении величины регулируемого параметра начинает перемещаться только после возникновения усилия, достаточного для преодоления сил трения во всех подвижных частях. У регулятора непрямого действия силы трения преодолеваются за счет постороннего источника энергии, и не требуется значительного изменения усилий на мембрану. Поэтому регулирование происходит здесь более плавно. Однако независимо от принципа действия регуляторы должны всегда обеспечивать достаточно устойчивое регулирование.

Регуляторы давления непосредственного (прямого) действия. Регулятор представляет собой дроссельное устройство, приводимое в действие мембраной, находящейся под воздействием регулируемого давления. Всякое изменение давления газа вызывает перемещение мембраны, а вместе с ней и изменение проходного сечения дроссельного устройства, что влечет за собой уменьшение или увеличение расхода газа, протекающего через регулятор. Таким образом, обеспечивается постоянство давления на заданном уровне.

Регуляторы подразделяются в зависимости от формы и типа дроссельных устройств, вида мембран (плоские и манжетные), способов сочленения мембран с клапанами, рода нагрузки для уравновешивания давления газа на мембрану. Выпускаются регуляторы давления непосредственного действия, у которых передача импульса давления — расхода на мембрану идет через трубу, соединенную с газопроводом, подводящим газ к регулятору (регуляторы «до себя»), и регуляторы «после себя», где импульс передается на мембрану через трубку, соединенную с газопроводом после регулятора.

В зависимости от типа клапанов регуляторы могут быть од-носедельными, двухседельными, с мягкими и твердыми седлами,

В зависимости от рода нагрузки на мембрану различают три типа регуляторов: с весовой нагрузкой, с пружинной и с нагрузкой, создаваемой давлением газа.

Выбор регуляторов осуществляют на основании: максимального и минимального расходов газа; колебания расхода газа в течение суток; давления газа на входе и допустимых колебаний на выходе; состава газа; места установки регулятора.

Для герметичности и полного прекращения расхода газа (например, при установке регуляторов на тупиковых участках) более целесообразно применять односедельные регуляторы, обеспечивающие наибольшую плотность закрытия. Поэтому в городском газовом хозяйстве наиболее распространены именно односедельные клапаны.

Химический состав газа влияет на срок службы регулятора и отдельных его частей, особенно на применяемые резиновые детали. В основном в регуляторах применяется бензомасломорозостойкая резина.

Регуляторы давления с пружинным управлением приводом типа РД служат для снижения давления газа со среднего или высокого на низкое. Регуляторы устанавливают непосредственно у газопотребляющих установок, в шкафах на стенах зданий и в специальных помещениях для регуляторных пунктов.

Регуляторы типа РД состоят из двух основных узлов — дроссельного органа и привода. Дроссельный орган представляет собой вентильный корпус с муфтовыми концами и имеет второй ввод газа (прямо на клапан), что позволяет располагать входной и выходной газопроводы под углом 90° и устанавливать регуляторы как на прямом, так и на угловом участке газопровода. Для удобства присоединения регуляторов к газопроводам оба входных патрубка снабжены внутренними и наружными трубными резьбами, а на выходном патрубке установлена накидная гайка с ниппелем. Дросселирующее устройство состоит из клапана и ввернутого в крестовину латунного сопла, которое сопрягается с односедельным мягким клапаном с резиновой прокладкой.

Клапан соединяется коленчатым рычагом с мембраной. Корпус регулятора соединяется с крестовиной накидной гайкой. На заданное выходное давление регулятор и предохранительно-сбросной клапан настраивают пружиной.

Предохранительные клапаны служат для сброса газа в атмосферу в случае возрастания давления в газопроводе конечного давления сверх предельного.

В зависимости от диаметра седла увеличение давления газа на входе на 0,1 МПа вызывает рост конечного давления на 25... 80 Па.

При работе регулятора на сжиженных газах расход учитывают с коэффициентом 0,5, гарантирующим защиту регулятора от резкого понижения температуры.

Пропускная способность регулятора при начальных давлениях газа до 0,6 МПа в значительной степени зависит от варианта входа газа в регулятор. При входе газа сбоку пропускная способность меньше, чем при входе газа прямо на клапан, из-за дополнительных потерь напора в крестовине, возрастающих с увеличением расхода. Для начальных давлений от 0,6 до 1,6 МПа существенного отличия в изменении подачи газа прямо на клапан и сбоку клапана не наблюдается.

При изменении расхода газа от 5 до 100 % (100 % —номинальный расход) давление после регуляторов меняется на ±7... 14 % при настройке на 2 кПа. Такое падение конечного давления при увеличении расхода вполне допустимо для регуляторов данного типа.

Увеличение давления газа на входе на 0,1 МПа вызывает увеличение конечного давления на 40 Па независимо от диаметра седла.

Регуляторы могут быть использованы на закольцованных и тупиковых городских сетях, регуляторных станциях, на промышленных и коммунально-бытовых газифицированных объектах.

Эти регуляторы относятся к регуляторам непосредственного действия с командным прибором.

Надмембранное пространство регулятора управления импульсной трубкой соединяется с газопроводом за регулятором давления. Таким образом, давление над мембраной регулятора управления всегда равно давлению газа в газопроводе. Регуляторы Давления типа РДУК-2 разработаны на условные проходы 50, 100 и 200 мм. Давление под мембраной регулятора управления равно атмосферному. Когда давление в газопроводе равно установленному, усилие от давления газа на мембрану регулятора управления равно усилию пружины. При этом клапан регулятора управления частично открыт.

При понижении давления в газопроводе пружина преодолевает усилие от давления газа на мембрану, в результате чего последняя поднимается кверху, увеличивая открытие клапана. При повышении давления открытие клапана уменьшается. Расход; газа, протекающего через клапан регулятора управления, пропорционален величине его открытия. Для установки регулятора управления на требуемое давление изменяют сжатие пружины.

Головка регулятора управления трубкой соединяется с подмембранным пространством регулирующего клапана, которое соединено трубкой с подклапанным пространством. Чтобы регулирующий клапан начал действовать, давление в подмембранном пространстве должно создать усилие, больше суммы усилий, создаваемых входным давлением на клапан и выходным давлением на мембрану в надмембранном пространстве.

Необходимый перепад давления между подмембранным и надмембранным пространством создается благодаря наличию дросселей в трубках.

В качестве командного прибора применяются регуляторы управления КН2 и КВ2.

Регуляторы конструкции Ф. Ф. Казанцева (РДБК)  отличаются универсальностью и повышенной надежностью в работе. Неравномерность выходного давления при использовании РДБК меньше, чем при использовании РДУК.

Регуляторы РД-32М и РД-50М заменяются регуляторами РДБК-1-25, а РДУК-2-50 и РДУК-2-100— соответственно РДБК-1-50 и РДБК-1-100.

Регулятор давления газа домовой РДГД-20 предназначен для снижения давления природного газа со среднего уровня до низкого, а также для автоматического поддержания давления перед бытовыми газовыми аппаратами на заданном уровне. Рассчитан на работу при температуре наружного воздуха — 30... 50 °С без дополнительного обогрева. Главная конструктивная особенность регулятора — встроенный отсечной клапан, выполняющий роль ПЗК.

Регулятор РДГД-20 монтируется на горизонтальном участке газопровода на высоте, как правило, не более 2,2 м стаканом вверх. В зону обслуживания при этом могут входить: отдельный подъезд секционного дома, отдельное здание или группы зданий.

Расстояние от регулятора, установленного на стене здания (кроме жилых домов, для которых размещение домовых регуляторов следует предусматривать только на глухих стенах), до оконных, дверных и других проемов должно быть не менее 1 ы по вертикали и 2 м по горизонтали при давлении газа на вход в регулятор не более 0,3 МПа. При необходимости его защищают от повреждения запирающимся металлическим кожухом. Установка регулятора в системах газоснабжения производится в соответствии с НГ-53-81.

Применение систем газоснабжения среднего давления позволяет значительно снизить металлоемкость газовых сетей (до 30... 40%), создать наиболее благоприятные условия для сжигания газа (при стабильном давлении) и, следовательно, повысить КПД используемых приборов, улучшить санитарно-гигиенические условия газификации помещений.

 


Поделиться с друзьями:

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.069 с.