Результаты испытаний образцов из стали У8 комплексного упрочнения — КиберПедия 

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Результаты испытаний образцов из стали У8 комплексного упрочнения

2020-08-21 121
Результаты испытаний образцов из стали У8 комплексного упрочнения 0.00 из 5.00 0 оценок
Заказать работу

(температура испытаний 250º С)

Технология упрочнения σ02 МПа σв МПа δ % φ % КС МДж/м2 КД Мпа/м1/2
1 2 3 4 5 6 7
1. Закалка и отпуск + (250º С)+ плазменная закалка 2. Закалка ТВЧ + плазменная закалка + лазерная закалка 3. Закалка ТВЧ + плазменная закалка + лазерная закалка + отпуск 180º С  250º С  300º С  400º С   980     1150     1200 1020 900 700   1300     1510      1580 1390 1080 920 6,2     7,8     7,9 7,1 6,2 5     29     38      40 38 30 25     0,058     0,062      0,064 0,058 0,052 0,048   7,8     8,9      9,2 8,2 6,4 4,8

К числу важных эксплуатационных свойств, определяющих область применения плазменного упрочнения, относится усталостная прочность. На сопротивляемость усталости материалов, после плазменного упрочнения, большее влияние оказывают параметры режима упрочнения. Параметры режима упрочнения определя­ют: величину и знак остаточных напряжений, дисперсность микроструктуры и т.д.

Известно, что наличие высоких сжимающих остаточных напряжений в зака­ленной зоне оказывает положительное влияние на усталостную прочность [1,9, 16].

Однако высокая хрупкость мартенсита в закаленном слое может являться причиной преждевременного разрушения при многоцикловом погружении.

 

Проведенные исследования и анализ литературных данных[1, 12, 15, 16, 491], показали, что плазменное, лазерное и электронно-лучевое упрочнение значительно увеличивают усталостную прочность деталей, работающих в условиях цик­лического нагружения, рис. 2.53.

Испытания на усталость при изгибе с кручением коленчатых валов (сталь 45) после плазменного упрочнения показали, что предел усталости по началу трещинообразования (60 МПа) у не упрочненных также (60 МПа) и на разрушение (130Мпа против 120Мпа) [49].

Плазменное азотирование из газовой: фазы стали 20 также позволило повысить предел выносливости на 40-60 %, по сравнению с исходным материалом [24].

Плазменная нитроцементация стали 20 также повышает предел выносливости на 40-60 %, по сравнению с исходным материалом. Исследования показали, что предел выносливости стали сильно зависит от режимов упрочнения, т, к. от них зависит величина остаточных сжимающих напряжений на поверхности, содержание азота и углерода в упрочненном слое. Установлено, что нитроцементированный слой постоянной глубины, но с разным содержанием оста­точного аустенита имеет разные значения предела выносливости. В стали 20 повышение содержания остаточного аустенита с 5 % до 12%, при постоянной глуби­не нитроцементированного слоя, увеличивает значение предела выносливости на 10-20 %. Плазменная нитроцементация стали 20 повышает предел выносливости, по сравнению с простой плазменной закалкой, рис. 2.54.

Исследование пластичности диффузионных слоев на стали 20 [24] показали, что наибольшей пластичностью обладает малоазотистая фаза, соответствующая твердому раствору на базе нитрида Fе4N, рис. 2.55а также карбонитридная фаза Fе3(NС).

Как уже отмечалось выше, основная цель поверхностного упрочнения - повышение износостойкости деталей машин и инструментов.

Формирование изнашиваемой поверхности происходит в результате суммирования различных по интенсивности и видам элементарных актов разрушения и изменений механических, физико-химических свойств материала, а также под воздействием внешних факторов (среда, температура, давление и т. д.). Совокупность явлений в процессе трения определяет вид изнашивания и его интенсивность. При назначении поверхностной упрочняющей обработки (с целью повышения износо­стойкости) необходимо установить причину изнашивания.

Под термином изнашивание понимают разрушение поверхности твердого тела, проявляющиеся в изменении его размеров или форм. Элементарные виды раз­рушения поверхностей трения: микрорезание, царапанье, отслаивание, выкрашива­ние, глубинное выравнивание, перенос материала, усталостное разрушение. Реали­зация элементарных видов разрушения на поверхностях трения возможно только при наличии следующих факторов: пластической деформации, повышенной темпе­ратуры и химического действия окружающей среды [55- 61].

 

Рис. 2.54. Диаграмма выносливости стали 20 после различных способов плазменного упрочнения

Плазменная закалка

Плазменная нитроцементация

 

В общем виде стадии изнашивания поверхности трения выглядят следующим образом, рис. 2.56.

Стадия начального изнашивания (приработка) характеризуется приобретени­ем стабильной шероховатостью поверхностей трения. Стадия установившегося из­нашивания характеризуется изменением микро- и макрогеометрия трения и постепенным увеличением интенсивности изнашивания. Процесс установившегося изнашивания заключается в деформировании, разрушении и непрерывном воссоздании

на отдельных участках поверхности слоя со стабильными свойствами. По мере истирания поверхностного слоя с повышенной износостойкостью открываются по­верхности с нестабильными свойствами, что вызывает катастрофический износ. Рис. 2.56а соответствует случаю, когда во время этапа приработки накапливаются факторы, которые после окончания приработки ускоряют процесс изнашивания.

Рис. 2.56б соответствует случаю, когда отсутствует этап приработки, апериод установившегося изнашивания наступает сразу после начала работы (металлообрабатывающий, деревообрабатывающий, медицинский инструмент, рабочие органы машин и т. д.). Рис. Рис. 2.56в соответствует случаю, когда детали находятся под действием контактных напряже­ний и длительное время работают практически без истирания. Основной механизм износа - усталостное выкрашивание поверхностных слоев.

Проведенные испытания на износостойкость сталей после различных видов термообработки при различных видах трения, показали существенные преимущест­ва плазменного поверхностного упрочнения перед традиционными способами. Ре­зультаты испытания в условиях сухого трения на воздухе по пальчиковой схеме [7-60] образцов стали 20, 45, 40Х, ЗОХГСА, прошедших плазменную закалку (без оп­лавления) представлены в табл. 2.20.

                                                                                                                                 Табл. 2.20.


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.