Статистика электронов и дырок в полупроводниках . Концентрация носителей заряда и положение уровня Ферми — КиберПедия 

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Статистика электронов и дырок в полупроводниках . Концентрация носителей заряда и положение уровня Ферми

2020-08-20 309
Статистика электронов и дырок в полупроводниках . Концентрация носителей заряда и положение уровня Ферми 0.00 из 5.00 0 оценок
Заказать работу

Равновесные процессы – процессы, происходящие в телах, которые не подвергаются внешним воздействиям. В состоянии термодинамического равновесия для кристалла полупроводника при заданной температуре существует определенное распределение электронов и дырок по энергиям, а также значения их концентраций. Вычисление концентраций основных и неосновных носителей заряда составляет главную задачу статистики электронов и дырок в кристаллах.

Электроны как частицы, обладающие полуцелым спином, подчиняются статистике Ферми – Дирака. Вероятность того, что электрон будет находиться в квантовом состоянии с энергией Е, выражается функцией Ферми – Дирака:

 

.                    (1.1)

 

Здесь F – электрохимический потенциал, или уровень Ферми. Из (1.1) видно, что уровень Ферми можно определить как энергию такого квантового состояния, вероятность заполнения которого равна 1/2.

Вид функции Ферми – Дирака схематически показан на рис. 1.3. При Т = 0 она имеет вид разрывной функции. Для E < F она равна 1, а значит, все квантовые состояния при E < F заполнены электронами. Для E > F функция f = 0 и соответствующие квантовые состояния совершенно не заполнены. При Т > 0 функция Ферми изображается непрерывной кривой и в узкой области энергий, порядка нескольких kT, в окрестности точки E = F быстро изменяется от 1 до 0. Размытие функции Ферми тем больше, чем выше температура.

Вычисление различных статистических величин значительно упрощается, если уровень Ферми F лежит в запрещенной зоне энергий и удален от края зоны Е C хотя бы на 2 kT (или Е C – Е > kT). Тогда в распределении (1.1) единицей в знаменателе можно пренебречь, и оно переходит в распределение Максвелла – Больцмана классической статистики. Это случай невырожденного полупроводника:

 

Рис. 1.3. Функция распределения плотности состояний в зоне проводимости N (E), функции Ферми – Дирака f и Больцмана f Б

 

.                    (1.2)

 

Функция Ферми – Дирака для электронов f n имеет вид

 

                        (1.3)

 

Концентрация электронов в зоне проводимости равна

 

                  (1.4)

где

.                    (1.5)

Величина N C получила название эффективной плотности состояний в зоне проводимости.

В случае невырожденного полупроводника, когда уровень Ферми лежит выше потолка валентной зоны хотя бы на 2 kT, то есть F – E C > 2 kT (или FE C > kT), функция Ферми – Дирака для дырок f p имеет вид

 

,                      (1.6)

 

а концентрация дырок в валентной зоне

 

,                  (1.7)

 

где E V – энергия, соответствующая потолку валентной зоны, а N V – эффективная плотность состояний в валентной зоне, которая рассчитывается по уравнению (1.5), если вместо m n взять эффективную массу дырки m p.

Для расчета n и p по уравнениям (1.4) и (1.7) необходимо знать положение уровня Ферми F. Однако произведение концентраций электронов и дырок для невырожденного полупроводника не зависит от уровня Ферми, хотя зависит от температуры:

 

.    (1.8)

 

Это уравнение используется для расчета p при известном n или, наоборот, для расчета n при известном p. Величина n i при некоторых температурах для конкретных полупроводников приводится в справочниках.

 

1.4. Концентрация электронов и дырок

в собственном полупроводнике

 

Полупроводник называется собственным, если в нем отсутствуют донорные и акцепторные примеси. В этом случае электроны появляются в зоне проводимости только за счет теплового заброса из валентной зоны, тогда n = p (рис. 1.4).

 

 

Рис. 1.4. Заброс электронов из валентной зоны

в собственном полупроводнике

 

При отсутствии внешних воздействий (освещение, электрическое поле и т.д.) будем обозначать концентрации свободных электронов и дырок с индексом нуль, то есть n 0 и p 0 соответственно. При n 0 = p 0 из (1.8) получаем

 

,    (1.9)

 

где n i - концентрация собственных носителей заряда в зоне проводимости и в валентной зоне. Для расчета N C и N V используется формула (1.5). Как следует из соотношения (1.9), концентрация собственных носителей определяется в основном температурой и шириной запрещенной зоны полупроводника.


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.