Таким образом, развитие атомной энергетики становится необходимостью для дальнейшего развития человечества и экономики. — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Таким образом, развитие атомной энергетики становится необходимостью для дальнейшего развития человечества и экономики.

2020-08-20 87
Таким образом, развитие атомной энергетики становится необходимостью для дальнейшего развития человечества и экономики. 0.00 из 5.00 0 оценок
Заказать работу

История развития ядерной энергетики

Приблизительно до 1800 года основным топливом было дерево. Энергия древесины получена из солнечной энергии, запасенной в растениях в течение их жизни. Начиная с Индустриальной революции, люди зависели от полезных ископаемых – угля и нефти, энергия которых также происходила из запасенной солнечной энергии. Когда топливо типа угля сжигается, атомы водорода и углерода, содержащиеся в угле, объединяются с атомами кислорода воздуха. При возникновении водного или углеродистого диоксида происходит выделение высокой температуры, эквивалентной приблизительно 1.6 киловатт-час на килограмм или приблизительно 10 электрон-вольт на атом углерода. Это количество энергии типично для химических реакций, приводящих к изменению электронной структуры атомов. Части энергии, выделенной в виде высокой температуры, достаточно для поддержания продолжения реакции.

Первая в мире АЭС опытно-промышленного назначения мощностью 5 МВт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась преимущественно в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике.

В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт. В том же году развернулось строительство Белоярской промышленной АЭС, а 26 апреля 1964 генератор 1-й очереди выдал ток в Свердловскую энергосистему, 2-й блок мощностью 200 МВт сдан в эксплуатацию в октябре 1967. Отличительная особенность Белоярской АЭС – перегрев пара непосредственно в ядерном реакторе, что позволило применить на ней обычные современные турбины почти без всяких переделок.

За рубежом первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 в Колдер-Холле (Англия). Через год вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Основы ядерной энергии

Атомное ядро характеризуется зарядом Ze, массой М, спином J, магнитным и электрическим квадрупольным моментом Q, определенным радиусом R, изотопическим спином Т и состоит из нуклонов – протонов и нейтронов. Все атомные ядра разделяются на стабильные и нестабильные. Свойства стабильных ядер остаются неизменными неограниченно долго. Нестабильные же ядра испытывают различного рода превращения.

Явление радиоактивности, или спонтанного распада ядер, была открыта французским физиком А. Беккерелем в 1896 г. Он обнаружил, что уран и его соединения испускают лучи или частицы, проникающие сквозь непрозрачные тела и способные засвечивать фотопластинку, Беккерель установил, что интенсивность излучения пропорциональна только концентрации урана и не зависит от внешних условий (температура, давление) и от того, находится ли уран в каких-либо химических соединениях.

Альфа-распад

Энергия связи ядра характеризует его устойчивость к распаду на составные части. Если энергия связи ядра меньше энергии связи продуктов его распада, то это означает, что ядро может самопроизвольно (спонтанно) распадаться. При альфа-распаде альфа-частицы уносят почти всю энергию, и только 2% ее приходится на вторичное ядро. При альфа-распаде массовое число изменяется на 4 единицы, а атомный номер на две единицы.

Начальная энергия альфа-частицы составляет 4–10 МэВ. Поскольку альфа-частицы имеют большую массу и заряд, длина их свободного пробега в воздухе невелика. Так, например, длина свободного пробега в воздухе альфа-частиц, испускаемых ядром урана, равна 2,7 см, а испускаемых радием, – 3,3 см.

Бета-распад

Это процесс превращения атомного ядра в другое ядро с изменением порядкового номера без изменения массового числа. Различают три типа бета – распада: электронный, позитронный и захват орбитального электрона атомным ядром. Последний тип распада принято также называть К-захватом, поскольку при этом наиболее вероятно поглощение электрона с ближайшей к ядру К оболочки. Поглощение электронов с L и М оболочек также возможно, но менее вероятно. Период полураспада b – активных ядер изменяется в очень широких пределах.

Число бета-активных ядер, известных в настоящее время, составляет около полутора тысяч, но только 20 из них являются естественными бета-радиоактивными изотопами. Все остальные получены искусственным путем.

Непрерывное распределение по кинетической энергии испускаемых при распаде электронов объясняется тем обстоятельством, что наряду с электроном испускается и антинейтрино. Если бы не было антинейтрино, то электроны имели бы строго определенный импульс, равный импульсу остаточного ядра. Резкий обрыв спектра наблюдается при значении кинетической энергии, равной энергии бета-распада. При этом кинетические энергии ядра и антинейтрино равны нулю и электрон уносит всю энергию, выделяющихся при реакции.

При электронном распаде остаточное ядро имеет порядковый номер на единицу больше исходного при сохранении массового числа. Это означает, что в остаточном ядре число протонов увеличилось на единицу, а число нейтронов, наоборот, стало меньше: N=A – (Z+1).

2.3.Гамма-распад

Стабильные ядра находятся в состоянии, отвечающем наименьшей энергии. Это состояние называется основным. Однако путем облучения атомных ядер различными частицами или высокоэнергетическими протонами им можно передать определенную энергию и, следовательно, перевести в состояния, отвечающие большей энергии. Переходя через некоторое время из возбужденного состояния в основное, атомное ядро может испустить или частицу, если энергия возбуждения достаточно высока, или высокоэнергетическое электромагнитное излучение – гамма-квант. Поскольку возбужденное ядро находится в дискретных энергетических состояниях, то и гамма-излучение характеризуется линейчатым спектром.

Замечательным и чрезвычайно важным свойством реакции деления является то, что в результате деления образуется несколько нейтронов. Это обстоятельство позволяет создать условия для поддержания стационарной или развивающейся во времени цепной реакции деления ядер. Действительно, если в среде, содержащей делящиеся ядра, один нейтрон вызывают реакцию деления, то образующиеся в результате реакции нейтроны могут с определенной вероятностью вызвать деление ядер, что может привести при соответствующих условиях к развитию неконтролируемого процесса деления.

3.Ядерные реакторы

Ядерный реактор – установка, в которой осуществляется самоподдерживающаяся управляемая цепная ядерная реакция деления. Ядерные реакторы используются в атомной энергетике и в исследовательских целях. Основная часть реактора – его активная зона, где происходит деление ядер и выделяется ядерная энергия. Активная зона, имеющая обычно форму цилиндра объёмом от долей литра до многих кубометров, содержит делящееся вещество (ядерное топливо) в количестве, превышающем критическую массу. Ядерное топливо (уран, плутоний) размещается, как правило, внутри тепловыделяющих элементов (ТВЭЛов), количество которых в активной зоне может достигать десятков тысяч. ТВЭЛы сгруппированы в пакеты по несколько десятков или сотен штук. Активная зона в большинстве случаев представляет собой совокупность ТВЭЛов погружённых в замедляющую среду (замедлитель) – вещество, за счёт упругих соударений с атомами соударений с атомами которого энергия нейтронов, вызывающих и сопровождающих деление, снижается до энергий теплового равновесия со средой. Схема ядерного реактора изображена на Рисунке 1.


Поделиться с друзьями:

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.