Некоторые сведения о музыкальных инструментах. — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Некоторые сведения о музыкальных инструментах.

2020-11-03 88
Некоторые сведения о музыкальных инструментах. 0.00 из 5.00 0 оценок
Заказать работу

Деревянные деки музыкальных инструментов выполняют функции резонаторов, обеспечивая хорошие условия звучания. Частоты струнных инструментов не зависят от резонатора. Основная частота звука и частоты обертонов зависят только от массы, натяжения и длины струны. Однако тембр звука зависит от способа возбуждения и от реакции резонатора и эффективности, с которой резонатор "поддерживает" эти частоты и посылает соответствующие волны в окружающее пространство.

В духовых инструментах формирование звука связано с наличием автоколебаний и зависит как от конструкции инструмента, так и от способа, с помощью которого воздух вдувается в инструмент. В качестве иллюстрации рассмотрим качественно процесс возникновения автоколебаний в органной трубе, разрез которой изображен на рис. 5.17а.

 Рис. 5.17.

При равномерном поступлении в мундштук М (ситуация б) воздух проходит через узкую щель Щ, за которой образуется турбулентный поток. Образующаяся при таком течении вихревая дорожка является источником "щелевого" тона, основная частота которого обратно пропорциональна периоду следования вихрей По существу система "мундштук + щель" представляет собой сложную автоколебательную систему, теоретическое описание которой - серьезная проблема.

Вихри, выходящие из щели, поочередно проходят слева и справа от язычка Я, вызывая его вибрацию (ситуация а). Язычок оказывает периодическое воздействие на столб воздуха в трубе. Возникающие в столбе импульсы сжатия, добежав до открытого конца трубы, отражаются в виде импульсов разрежения и возвращаются к щели через время ( - длина трубы, - скорость звука в воздухе), управляя поступлением воздуха через щель. Таким образом, основная частота формируется резонаторной системой. Однако можно вдувать воздух так, чтобы в трубе одновременно существовали два импульса сжатия, и мы услышим звучание трубы на частоте первого обертона (удвоенной частоте).

Органные трубы обычно конструируются для звучания на основной частоте. В духовых инструментах возбуждающим вибратором (аналогом язычка Я в органной трубе) можно управлять, чтобы посылать в трубу один или более импульсов, прежде чем первый отразится от открытого конца. Высота звука инструмента определяется количеством импульсов в секунду, отраженных от открытого конца духового инструмента.

Произносимые человеком звуки связаны с тем, что голосовые связки гортани вибрируют под напором движущегося воздуха, а гортань является объемным резонатором. Как правило, у мужчин объем гортани больше, чем у женщин, поэтому в соответствии с формулой (5.34) мужские голоса более низкие.

На рис. 5.18 показаны спектры звуков, извлекаемых на трубе и валторне с одинаковой основной частотой По оси ординат отложена громкость (нормирована на громкость волны основной частоты). В спектре звука валторны отсутствуют частоты поэтому её звук более приглушенный, нежели звук трубы.

 Рис. 5.18.

Завершая описание основных принципов действия источников звука и музыкальных инструментов, уместно упомянуть о двух акустических эффектах, с проявлениями которых мы практически ежедневно встречаемся.

Эффект Доплера.

Наблюдая за проходящим мимо поездом или движущимся автомобилем, мы замечаем, что высота тона подаваемого ими звукового сигнала постоянно изменяется. Это и есть одно из проявлений эффекта Доплера, состоящего в изменении частоты звука при относительном движении источника и приемника. Рассмотрим это явление несколько подробнее.

Пусть источник И (рис. 5.19а) излучает монохроматическую (т.е. гармоническую) акустическую волну частоты Тогда длина этой волны, распространяющейся в воздухе со скоростью с, будет равна:

(5.37)

 

Рис. 5.19.

Если теперь источник будет двигаться со скоростью в направлении распространения волны, то волна будет "отрываться" от источника со скоростью и её длина уменьшится (рис. 5.19б):

 (5.38)

Достигнув неподвижного приемника П, эта волна будет воздействовать на него с частотой

(5.39)

которая будет больше исходной частоты При движении источника в противоположном направлении эта частота уменьшится. Именно это изменение частоты тона сигнала мы фиксируем при приближении и последующем удалении поезда или автомобиля.

Изменение частоты будет также и при движении приемника П, однако физическая причина этого изменения состоит в том, что волна с длиной будет поступать в приемник со скоростью (если приемник движется навстречу волне). Следовательно, частота воздействия на приемник будет равна

(5.40)

и превысит исходную частоту.

В силу различия физических причин, приводящих к изменению частоты при движении источника и приемника, разнятся и формулы (5.39) и (5.40). Однако при как нетрудно убедиться, с точностью до членов порядка формула (5.39) может быть записана в виде (5.40).

При одновременном движении навстречу друг другу источника со скоростью и приемника со скоростью обе формулы можно объединить в одну

(5.41)

При удалении источника или приемника в формуле (5.41) следует изменить знак при соответствующей скорости.

При скоростях  формируются ударные волны, и формулы, описывающие изменение частоты, становятся несправедливыми.

Бинауральный эффект.

Этот эффект представляет собой психофизиологическое явление, заключающееся в слитном восприятии звуков, принимаемых правым и левым ухом. Он дает возможность определить направление на источник звука и играет существенную роль в музыкальной акустике (стереофония).

Рисунок 5.20 иллюстрирует этот эффект. Если волна падает под углом к линии, соединяющей оба уха (пунктиром изображен контур радиуса имитирующий голову человека), то волна достигнет левого уха позднее правого, а время задержки составит величину

(5.42)

где  – криволинейный путь, проходимый звуковой волной при огибании ею головы человека за счет дифракции (см. ниже).

 Рис. 5.20.

Кроме того, поскольку голова частично экранирует звук, то амплитуда волны, достигающей левого уха, несколько уменьшается. Совместное действие этих двух факторов дает человеку возможность определить направление на источник звука. Если период колебаний звуковой волны сравним со временем задержки:

 (5.43)

то волны, падающие под углом, вызывают колебания барабанных перепонок левого и правого уха со сдвигом фаз  по которому человек и определяет направление прихода волны.

Если положить  то для волн с периодом  условие (5.43) не выполняется, и определить направление по сдвигу фазы становится затруднительно. Однако остается возможность сравнить амплитуды волн, достигающих обоих ушей, и тем самым определить угол

Интерференция волн.

В предыдущей лекции мы получили уравнение стоячей волны (4.34), описывающее колебания шнура (или иной среды), по которому навстречу друг другу распространяются две гармонические волны одинаковой частоты и амплитуды В результате наложения волн происходит перераспределение в пространстве объемной плотности энергии колебаний. В узлах, где волны встречаются в противофазе, эта энергия равна нулю. В пучностях, напротив, волны складываются в фазе, и энергия максимальна. Явление наложения волн, приводящее к перераспределению в пространстве объемной плотности энергии колебаний, носит название интерференции.

Интерференция является одним из фундаментальных явлений, присущих волнам различной природы (акустическим, электромагнитным, волнам на поверхности жидкости, плазменным волнам и др.). Она была хорошо известна еще во времена Ньютона, который осуществил замечательный опыт, приведший к открытию закономерностей интерференционной картины и получивший название "кольца Ньютона". Эти закономерности легко прослеживаются в опытах по интерференции капиллярных волн на поверхности жидкости. В следующей лекции дается описание характера движения частиц жидкости в таких волнах и устанавливается связь между частотой, длиной волны и скоростью ее распространения.

Один из таких опытов выглядит следующим образом (рис. 5.21). В неглубокую кювету К с большой площадью основания наливают воду. Волны на ее поверхности возбуждают с помощью вибратора В, приводящего в периодическое движение два маленьких шарика О1 и О2, которые являются точечными источниками волн. Эти шарики слегка погружены в воду и совершают синхронные колебания с частотой в направлении, перпендикулярном поверхности воды. От каждого из точечных источников распространяется волна с длиной и скоростью Гребни этих волн в фиксированный момент времени изображены на рисунке пунктиром. В результате наложения волн образуется интерференционная картина, которую удобно наблюдать в стробоскопическом освещении (освещая ее вспышками света, следующими также с частотой ). При таком освещении волны будут казаться практически неподвижными.

 Рис. 5.21.

Наиболее сильные возмущения поверхности будут наблюдаться в тех местах, где волны складываются в фазе. Говорят, что здесь располагаются интерференционные максимумы. В местах, куда волны приходят в противофазе, поверхность будет практически не возмущена: здесь располагаются интерференционные минимумы. Возмущение поверхности в произвольной точке M зависит от разности хода где и - расстояния от точки M до соответствующего точечного источника. Действительно, смещение s поверхности жидкости в точке M можно рассматривать как результат наложения двух синусоидальных (т.е. монохроматических) волн, прошедших расстояния и :

 (5.44)

Здесь предполагается, что обе волны в точке M имеют одинаковые амплитуды (хотя это и не совсем верно), и постоянные фазовые добавки и так что их разность не зависит от времени.

Выполняя в (5.44) суммирование, получаем:

(5.45)

Если положить для простоты то положение интерференционных максимумов определяется из условия

(5.46)

Поскольку то последнему условию соответствует разность хода

(5.47)

где

Каждому максимуму принято присваивать порядковый номер, определяемый соответствующим числом (максимум нулевого, первого, минус первого и т.д. порядка). Интерференционные минимумы располагаются в тех местах, где

(5.48)

и так же нумеруются

Рассмотренная интерференционная картина соответствует идеализированной ситуации. Реальные волны даже в лучшем случае являются квазимонохроматическими. Для таких волн амплитуды и фазы и являются медленно меняющимися функциями времени (заметные изменения этих функций происходят за время ). Однако, если оба шарика приводятся в колебательное движение одним вибратором, разность фаз в (5.45) остается постоянной, положение интерференционных максимумов задается формулой (5.47) и не зависит от времени.

В практически важных случаях источники интерферирующих волн могут быть независимы. В нашем опыте это можно осуществить, если использовать два вибратора, к каждому из которых присоединен маленький шарик. Тогда разность фаз будет также изменяться на масштабе времени и ее можно записать в виде

(5.49)

где  – среднее по времени значение разности фаз, - знакопеременная функция. Считая для простоты в (5.45)  приходим к выводу, что интерференционная картина, как целое, будет достаточно хаотично смещаться в разные стороны. Если такую картину снимать на кинопленку со временем экспозиции кадра  то на каждом кадре будет отпечатана усредненная за время "размазанная" картина. Она может стать совсем неразличимой, если интерференционные максимумы будут смещаться на величины, равные или превышающие расстояния между соседними максимумами. Такая ситуация достаточно часто встречается при интерференции световых волн. Чтобы полного "смазывания" картины не произошло, очевидно, необходимо выполнение следующего условия:

(5.50)

Чем лучше выполняется это неравенство, тем выше качество картины. Так, например, для световых волн  и при визуальном наблюдении (для органов зрения ) мы всегда регистрируем "размазанную" интерференционную картину.

С качеством картины напрямую связано понятие когерентности интерферирующих волн. Когерентность характеризуется безразмерным коэффициентом (степенью когерентности), который может меняться в интервале  Чем выше качество картины, тем больше степень когерентности. Для монохроматических волн, конечно,

Этим замечанием о когерентности волн мы здесь и ограничимся, а детальное описание этого понятия будет дано в курсе "Оптика".

Дифракция волн.

В упрощенном смысле под дифракцией понимают круг явлений, в которых проявляется отступление от прямолинейного распространения волн. Такое понимание дифракции, вообще говоря, неверно, поскольку прямолинейное распространение волн является лишь определенным приближением. Действительно, специфика любого волнового движения проявляется в том, что это движение, возникнув вначале в ограниченной области, стремится распространиться в равной степени во все стороны. Выбором специальной формы этой области можно добиться того, что волна побежит преимущественно в некоторых направлениях. Вдоль одного из таких направлений побежит фрагмент волны, который с определенной точностью можно считать движущимся прямолинейно.

Для наблюдения основных закономерностей дифракции видоизменим характер возбуждения волн на поверхности воды в описанном ранее опыте. В качестве источника волны вместо шариков будем использовать пластину O1O2, длина которой т.е. заметно превышает длину волны (рис. 5.22). В результате по поверхности воды побежит "плоская" волна в направлении, перпендикулярном пластине. Отчетливо наблюдаются две прямолинейные границы Г1 и Г2, отделяющие возмущенную волной и гладкую части поверхности воды. Для этой последней части можно употребить заимствованный из оптики термин: "область геометрической тени". Саму волну часто называют волновым пучком, или лучом. В этом эксперименте можно считать, что волна распространяется прямолинейно и не заходит в область тени. Это связано с тем, что размер ее волнового фронта

 Рис. 5.22.

Уменьшим теперь этот размер. Это наиболее просто осуществить, если параллельно пластине O1O2 установить две вертикальные стенки С1 и С2, расстояние между которыми можно изменять (рис. 5.23).

 Рис. 5.23.

Если сделать то волна начнет постепенно заходить в область тени, а ее фронт будет искривляться. На некотором характерном расстоянии волновой пучок приобретет заметную угловую расходимость и далее будет распространяться по части поверхности, ограниченной углом При уменьшении зазора между стенками угол возрастает, а расстояние уменьшается. Это отступление от прямолинейного распространения является результатом дифракции, существенно тогда, когда

Не составляет труда оценить величины и используя подход, предложенный французским ученым О. Френелем в XIX столетии для объяснения дифракции световых волн. Следуя Френелю, участок фронта падающей волны в зазоре между стенками можно рассматривать как цепочку из близко расположенных одинаковых точечных источников (рис. 5.24).

 Рис. 5.24.

Возмущение в любой точке M поверхности воды есть результат интерференции волн от этих, так называемых "вторичных" источников, и зависит от разности хода всех интерферирующих волн. В практически важных случаях расстояния поэтому отрезки можно считать параллельными. Понятно, что в точку P, лежащую на оси волнового пучка, интерферирующие волны приходят в фазе и возмущение поверхности в ней будет максимальным. Напротив, в точке M волны могут погасить друг друга, если разность хода между волнами от крайнего источника O1 и среднего источника будет равна Поскольку эта разность, как видно из рис. 5.24, равна то

(5.51)

Аналогично, в противофазе будут приходить волны и от других пар источников  Говорят, что в точке M будет наблюдаться первый минимум дифракционной картины. Не составляет труда написать условие, подобное (5.51), и для других минимумов. Однако, как показывает строгий анализ, более 90% всей энергии переносится волной в пределах угла  Поэтому на рисунке (5.23) границы Г1 и Г2 весьма условны и очерчивают лишь основную, наиболее энергоемкую часть пучка.

Для оценки дифракционной расходимости волновых пучков используется угол который при оценивается согласно (5.51) по формуле

(5.52)

Такую расходимость пучок приобретает на некотором характерном расстоянии Его можно легко оценить из рисунка 5.25, на котором пунктиром изображены асимптоты к границам Г1 и Г2. Будем условно считать, что на расстоянии поперечный размер пучка удвоился и стал равным Тогда с учетом (5.52) мы можем записать:

(5.53)

Отсюда

(5.54)

Величина называется дифракционной длиной пучка с длиной волны и поперечным размером Она определяет масштаб расстояний, на которых развивается заметная дифракция пучка.

 

Рис. 5.25.

Сделаем некоторые оценки. В опыте, изображенном на рисунке (5.22), и Это означает, что в кювете дифракция просто не успевает заметно развиться. При уменьшении (рис. 5.23) до величины дифракционная длина пучка и дифракция становится отчетливо видна.

Если на пути волнового пучка поставить препятствие - стенку С (рис. 5.26), то сразу за стенкой будет тень, однако волна, пройдя расстояние обогнет препятствие. Иллюстрацией к сказанному является, например, возможность услышать звуковой сигнал автомобиля, находясь позади небольшого строения. Однако за многоэтажный дом звук практически не проникает.

 

Рис. 5.26.

 

Волны на поверхности жидкости. Гравитационные волны. Капиллярные волны. Цунами. Внутренние волны. Акустические волны большой амплитуды. Линейный и нелинейный режимы распространения. Уединенные волны (солитоны).


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.057 с.