Температура влияет на все жизненно важные процессы — КиберПедия 

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Температура влияет на все жизненно важные процессы

2020-04-01 93
Температура влияет на все жизненно важные процессы 0.00 из 5.00 0 оценок
Заказать работу

Содержание

 

Введение

1. Температура и жизнь

1.1 Температура влияет на все жизненно важные процессы

2. На пути к гомойотермии

2.1 Гомойотермные животные

2.2 Температура у насекомых

2.3 Терморегуляторное поведение рыб

2.4 Стабильная температурная регуляция у рептилий

3. Различная температура тела у гомойотермных животных

3.1 Температурные отношения в теле

3.2 Семенники нуждаются в охлаждении

3.3 Температурная чувствительность головного мозга

4. Терморегуляторные реакции

4.1 Испарение

4.2 Значение волос и перьев

5. Оптимальные температуры для гомойотермных

5.1 Механизмы функциональных влияний

5.2 Влияние приема пищи

5.3 Влияние теплопродукции

5.4 Влияние на образование гормонов

Заключение

Список литературы


Введение

 

Белок является необходимым компонентом живых организмов. Белки денатурируют при температуре выше 45°С и замерзают при 0°С, что нарушает процессы жизнедеятельности. Таким образом, теоретически жизнь возможна только в ограниченном диапазоне температур - от 0°С до 45°С. Однако в пустыне температура воздуха может подниматься до 65°С, а жизнь там. тем не менее возможна. В Арктике и Антарктике температура зимой снижается до -55°С, на северном полюсе - порой до -65°С, однако и там существуют высокоразвитые живые организмы. Жизнь в таких экстремальных условиях возможна потому, что у организмов в процессе эволюции сформировалась система терморегуляции, которая обеспечивает поддержание температуры тела даже при значительных изменениях температуры окружающей среды.

Приведем несколько примеров. Грызуны пустыни в жаркие дневные часы прячутся в глубокие норы под землей и вылезают на поверхность преимущественно ночью, когда окружающая температура опускается ниже +20°С. У полярных животных (белые медведи, полярные лисы), а также у человека, использующего мех этих животных, отдача тепла в окружающую среду невелика даже при -40°С.

Человек в сухой сауне выделяет до 2 литров пота в час и теряет, несмотря на высокую температуру окружающей среды, более 4000 килоджоулей тепла в результате испарения влаги. Комфортная температура для обнаженного человека составляет приблизительно +28°С. В экстремальных температурных условиях человек создает оптимальный микроклимат путем подбора соответствующей одежды, отопления комнат и др. Эскимосы, используя традиционные подходы, способны создавать для себя субтропический микроклимат. Следует констатировать, что человек, благодаря техническим достижениям и опыту, достиг практически высшей формы терморегуляторного поведения из всех живых существ.

За счет процессов адаптации область температур, в которой возможна оптимальная работоспособность животных, значительно варьирует. К примеру, для крупного рогатого скота температура внешней среды около 23°С является стрессовой термической нагрузкой, что может привести к значительному снижению продукции молока, в то время как зебры устойчивы к температуре около 32°С. Существуют многообразные механизмы, обеспечивающие идеальную адаптацию к высокой температуре окружающей среды. Так, короткие, тонкие и светлые волосы хорошо отражают лучи солнца теплового спектра. Прием пищи увеличивает энергозатраты и интенсивность теплопродукции, что влияет на количество и качество молока. С другой стороны, при высокой температуре хорошо утилизируются неудобоваримые, грубоволокнистые продукты питания. Это актуально тогда, когда имеется недостаток воды, или в пище содержится избыточное количество соли. В подобных ситуациях через почки и желудочно-кишечный тракт выделяется очень много воды при достаточно высокой секреции пота. При наличии длинных, стройных конечностей, больших ушей и хорошо кровоснабжаемых складок кожи в области шеи достаточное количество тепла может отдаваться в окружающую среду путем изменения транспорта тепла и теплопроводности. За счет этого нивелируется влияние повышенной температуры среды на температуру тела.

Системы, регулирующие температуру тела у позвоночных, формируются в ранней фазе филогенетического развития. Их постоянная оптимизация ведет к улучшению условий жизни животных и к адекватному развитию уровня обмена веществ.

Постоянная температура тела у млекопитающих создала предпосылки для стабильного функционирования центральной нервной системы, а это обеспечило превосходство этой группы животных над другими видами живых существ. В этом смысле совершенствование температурной регуляции может рассматриваться как часть истории эволюции


Температура и жизнь

На пути к гомойотермии

Гомойотермные животные

 

Гомойотермные животные (от греч. hómoios — сходный, одинаковый и thérmë— тепло), животные с постоянной, устойчивой температурой тела, почти не зависящей от температуры окружающей среды. К Г. ж. относятся птицы и млекопитающие. Характерная черта Г. ж. — наличие у них механизмов терморегуляции — химической (регуляция продукции тепла в организме) и физической (регуляция отдачи тепла во внешнюю среду).

 

Температура у насекомых

 

Системы, регулирующие температуру у насекомых, изучены лучше, чем у других беспозвоночных, с одной стороны, очевидно, в результате того, что у насекомых имеются многообразные терморегуляторные возможности. С другой стороны, это определяется несомненной простотой в содержании насекомых, что упрощает экспериментальные условия при проведении опытов. Большинство насекомых эндотермны. Однако некоторые виды насекомых, такие как бражники, пчелы и шмели могут в период подготовки к полету проявлять поведение, напоминающее эндотермных существ.

У всех видов насекомых развиты сложно функционирующие терморецепторы, расположенные на туловище, антеннах и конечностях. Кроме того, обнаружены чувствительные к температуре клетки в торакальных ганглиях. Так, к примеру, в условиях охлаждения второго и третьего торакальных сегментов у моли (Hyalophora) наблюдается прекращение ритмических движений мускулатуры, обеспечивающей полет насекомого. Вместо координированных движений отмечаются хаотичные подергивания, сопровождающиеся скрежетом (типа свиста) и напоминающие по своему характеру мышечную дрожь у плацентарных существ и птиц. Если грудные ганглии вновь согреть до оптимальной температуры, то, несмотря на низкую температуру окружающей среды, у моли прекращается мышечная дрожь и предпринимаются попытки взлететь.

Терморецепторы эндотермных насекомых, к которым, например относятся мухи и цикады, участвуют в координации терморегуляторного поведения. Насекомые лишь тогда проявляют двигательную активность ее и температура тела возрастает до I7-20T. В ночные часы они впадают в оцепенение, из которого выходят, когда температура воздуха после подъема солнца начинает повышаться. Различные виды кузнечиков располагают свое тело поперек направления солнечных лучей, что позволяет им в большей степени воспринимать энергию солнца и в течение короткого времени поднять температуру тела выше температуры окружающей среды. В течение дня они изменяют положение своего тела и, таким образом, регулируют теплопоглощение и теплоотдачу. Изменение температуры тела в течение дня позволяет кузнечикам развивать максимальную двигательную активность.

Эндотермные насекомые увеличивают перед полетом свою теплолопродукцию за счет ритмических сокращений летательной мускулатуры, в связи с чем температура во всей области грудной стенки и особенно, летательной мускулатуры, повышается"- Обычно при этом сокращаются одновременно обе группы летательной мускулатуры (сгибатели и разгибатели). Крылья при этом почти не движутся, или эти движения минимальны. В таких случаях температура грудной клетки достигает 40-41°С, что происходит за счет теплопродукции во время сокращений мускулатуры. Во время полета температура тела насекомых может лежать в широкой области окружающих температур - у шмелей она поддерживается на уровне от 10 до 25°С. Это возможно в результате того, что насекомые способны изменять как свою теплопродукцию, так и теплоотдачу. Чешуекрылые, бабочки, к примеру, переходят за счет соответствующего изменения положения крыльев от активного полета к скольжению и продукции при этом меньшего количества тепла.

Грудная клетка эндотермных насекомых за счет толстого, многочисленного волосяного покрова хорошо изолирована. Как только температура их грудной клетки превышает 40°С, сосуды кровеносной системы спины начинают ритмически сокращаться и перемещать холодную кровь из брюшной в грудную полость; температура груди за счет этого снижается. Прежде, чем кровь возвратится в сосуды спины, она на своем пути проходит через открытые участки тела, где охлаждается окружающей температурой, что также приводит к снижению температуры грудной клетки. Некоторые виды насекомых увеличивают теплоотдачу за счет возрастания испарения воды с внутренних или внешних поверхностей тела. Такой вид теплоотдачи может привести к нарушению содержания воды в организме. Только кровососущие насекомые, такие, к примеру, как муха цеце, могут кратковременно и эффективно испарять воду. Через расширенное трахеальное отверстие они увеличивают отдачу воды в виде пара и снижают за счет испарения температуру тела на 1,6°К ниже температуры окружающей среды.

При увеличении окружающей температуры насекомые вынуждены неоднократно прерывать свой полет, поскольку, несмотря на наличие многочисленных защитных механизмов, они не могут избежать перегревания организма. Во время покоя температура их тела снижается за счет незначительной теплопродукции и за счет большого температурного градиента между организмом и окружающей средой, что позволяет им вскоре вновь продолжить свой полет.

При низкой температуре окружающей среды повышенная теплоотдача в воздух (конвекция) во время полета так возрастает, что температура тела, несмотря на максимальную теплопродукцию, снижается. В этом случае насекомые также прерывают свой полет. За счет повторяющихся жужжаний они поднимают температуру своего тела до того уровня, при котором вновь становится возможным полет.

Успех полета пчел и шмелей во время поиска пищи зависит от температуры окружающей среды. Шмели начинают свои поиски уже при температуре воздуха от 5 до 10°С. Во время остановок на цветке они могут охлаждаться так сильно, что без дополнительных взмахов крыльями не могут вновь стартовать. При более высокой окружающей температуре (до 20°С) они покидают цветок, прежде чем температура их тела снизится ниже критического уровня. Небольшое расстояние на территории между цветами способствует успешному полету. При увеличении расстояния полета между двумя цветками температура тела шмеля может так повышаться, что даже при низкой температуре окружающей среды во время остановки на цветке она не всегда достигает оптимального уровня.

 

Терморегуляторные реакции

Испареие

 

Большая часть тепла отнимается от организма в условиях испарения воды с увлажненной поверхности тела. Испарение воды осуществляется у гомойотермных животных с кожи и со слизистых оболочек. При высокой температуре окружающей среды животные увлажняют свою кожу посредством секреции пота или, погружаясь в жидкую грязь и лужи. В некоторых ситуациях увлажнение происходит за счет облизывания определенных частей тела (например, у крыс). Эффективно работающие потовые железы, выделяющие большое количество жидкости с небольшим содержанием минеральных веществ, широко распространены (от людей до парнокопытных). За счет испарения пота человек теряет до 816 Вт х м 2, и, несмотря на это, в условиях высокой температуры окружающей среды в течение многих часов способен стабилизировать температуру тела.

Другие млекопитающие, такие как жвачные животные, располагают потовыми железами, продуцирующими вязкий пот. Его количество не так велико, чтобы при высокой температуре окружающей среды обеспечить теплоотдачу. В противоположность лошадям у жвачных животных при высоких температурах возникает одышка.

Однако у большинства животных нет потовых желез, или они функционируют инертно. У таких организмов, как и у жвачных животных с их незначительными возможностями к секреции пота, решающую роль при высоких температурах окружающей среды играет теплоотдача через систему дыхания.

С увеличением температуры окружающей среды у животных начинается одышка. Вдыхаемый воздух в воздухоносных путях, начиная с полости носа и глотки и далее трахеи и бронхов, насыщается водяными парами. Тепло отдается со слизистых оболочек полостей носа, рта и глотки путем испарения.

Одышка особенно типична для собак. С увеличением частоты дыхание становится поверхностным, и с каждым вдохом принимаемое количество воздуха (дыхательный объем) начинает снижаться. Конечным результатом возросшей частоты дыхания и сниженного дыхательного объема обычно является увеличение минутного объема дыхания.

Частота дыхания значительно возрастает у животных с гипертермией, когда температура ядра начинает повышаться, что ведет к раздражению внутренних терморецепторов. Повышение температуры ядра до 40,5-41,5°С изменяет тип одышки. Дыхание вновь углубляется, минутный объем дыхания возрастает еще больше, и теплоотдача выражено увеличивается.

Во время первой фазы одышки животное вдыхает через нос, а выдыхает через полость рта. При температурных условиях ниже комфортного уровня, когда через нос проходит вдыхаемый и выдыхаемый воздух, в полости носа осуществляется интенсивный обмен тепла и воды по принципу противоточного механизма. Вдыхаемый воздух охлаждает слизистую оболочку носа и одновременно обезвоживает воздух, который возвращаясь из легких в полость носа, имеет более высокую температуру и влажность чем слизистая оболочка полости носа. В этих условиях большая часть полученных при дыхании водяных паров и принятого тепла вновь отдается слизистой оболочке носа. При выдыхании через полость рта механизм экономии воды нивелируется. Воздух проходит влажную и теплую полость рта, где создаются условия для испарения водяного пара. Эффективность тепловой одышки очень высока. Во время второй фазы одышки животное вдыхает и выдыхает через полость рта. К этому моменту времени слизистая оболочка полости рта начинает интенсивно снабжаться кровью, секреция слюны возрастает, что, несмотря на существенный обмен воздуха при дыхании, стабилизирует теплообмен в полости рта.

В отличие от секреции пота у механизма одышки имеются три недостатка. Во-первых, максимально возможная теплоотдача дыхательной системы не столь значительна. Во-вторых, одышка обуславливает выраженную активацию дыхательной системы. В этом аспекте следует оговориться, что у животных с частотой дыхания, приближающейся к резонансной частоте грудной клетки, происходит экономное расходование энергии и, несмотря на увеличенное потребление кислорода дыхательной мускулатурой, обеспечивается оптимальная частота и глубина дыхания. Коэффициент полезного действия тепловой одышки составляет у собак 61%. Это означает, что лишь 39% образуемой во время одышки энергии переходит в тепло. Наконец, в третьих, во время одышки увеличивается выведение из организма углекислого газа. Парциальное напряжение углекислого газа в венозной крови может понизиться с обычных 46 мм рт. ст. (6,1 кРа) почти на 10 мм рт. ст. (1,3 кРа). Развивается респираторный алкалоз, который существенно нарушает обмен веществ. У млекопитающих алкалоз сопровождается уменьшением кровоснабжения мозга.

 

Значение волос и перьев

 

При низкой температуре воздуха у млекопитающих приподнимаются волосы, а птицы расправляют свои перья. ")то сопровождается возрастанием пограничного слоя и лучшей изоляцией оболочки тела. У многих видов птиц эта форма температурной регуляции является начальной реакцией на падение температуры окружающей среды. Она эффективнее других форм температурной регуляции. К примеру, черные дрозды, нахохлившись при низкой температуре окружающей среды, способны стабилизировать температуру тела, лишь незначительно повышая энергообмен.

Американские ученые исследовали терморегуляторное поведение у кур-несушек. Для этого им понадобилось обучить животных пользоваться рычагом, с помощью которого можно было включать нагревательную лампу или устройство для охлаждения. Опыты длительное время заканчивались неудачей, поскольку курицы при снижении температуры воздуха расправляли перья и сидели, нахохлившись, не включая нагревательную лампу. Лишь когда большая часть пуха со спины кур была тщательно удалена, животные обучились пользоваться устройством для обогрева.

Значение оперения для температурной регуляции птиц дает следующая экспериментальная справка. У кур-несушек с нормальным оперением было определено соотношение между величиной теплопродукции и температурой окружающей среды.Соотношение описывается классической формулой через кривую параболической формы, нижняя часть которой располагается в зоне около 25°С. Совершенно иначе выглядит теплопродукция кур-несушек, у| которых за несколько дней до начала эксперимента под наркозом удаляли перья. Максимальный энергообмен у них отмечается при 20С. и он начинает прогрессивно снижаться как при повышении, так и при падении температуры окружающей среды.

Как упоминалось ранее, отношения между температурой окружающей среды и теплопродукцией в более широкой температурной области можно выразить через полином третьей степени. Это относится также к минимуму (термически нейтральной зоне) и к максимуму (температуре максимального энергообмена). Из этого можно заключить, что обе полученные кривые являются частью одной более общей кривой. У кур, имеющих нормальное оперение, и у кур без оперения, значения располагаются по разным сторонам кривой. У кур без оперения при температуре воздуха +20°С проявляются терморегуляторные реакции, в то время, как у кур, имеющих хорошее оперение, впервые эти реакции могут наступать лишь при температуре окружающей среды от -50 до -70°С

 


Влияние приема пищи

 

Прием пищи необходим для функционирования исполнительных органов в разнообразных регулирующих системах. Регуляция обмена воды и энергии также критична для температурной регуляции. С увеличением температуры окружающей среды прием пищи снижается. Вследствие этого системы температурной регуляции разгружаются. Уменьшение количества принимаемой пищи, в свою очередь, может привести к быстрому нарушению функций. Отношение между температурой окружающей среды и количеством принимаемой пищи описывается математически в виде функции параболической форм

 


Влияние теплопродукции

 

У гомойотермных животных при снижении температуры окружающий среды температура ядра поддерживается на стабильном уровне, поскольку часть принимаемой энергии превращается в тепловую энергию

 

5.4 Влияние на образование гормонов

Экстремальные температуры окружающей среды влияют на деятельность эндокринных желез. Так. при повторяющихся воздействиях высокие температуры воздуха снижают секрецию гормона роста, тормозят функцию щитовидной железы и выделение глюкокортикоидов из надпочечников, а также образование половых гормонов. В условиях низких температур окружающей среды энергетический обмен повышается преимущественно за счет активации гормонов. усиливающих интенсивность обменных процессов, особенно, глюкокортикоидов и катехоламинов надпочечников, а также глюкагона поджелудочной железы. Интенсивное повышение энергообмена ослабляет другие функциональные проявления жизнедеятельности.


Заключение

 

Курсовую можно закончить, сформулировав ряд открытых вопросов. Это обусловлено тем, что в области температурной регуляции много неясных проблем. Они касаются, в частности, таких теоретически важных представлений как уточнение роли терморегуляторно важной сети нейронов в переднем гипоталамусе, локализации экстрацеребральных терморецепторов во внутренних органах, механизмов влияния на температурную регуляцию сигнализации от рецепторов скелетной мускулатуры. Нельзя не упомянуть о вопросах прикладного характера, важных для жизни людей и для оптимального содержания подопытных и домашних животных, для защиты от вредителей животных и, наконец, для сельскохозяйственной продукции (улучшение качества молока и т. д.). Как и во многих областях биологии, в термофизиологии ряд вопросов интенсивно изучается, исследование других проблем находится в зачаточном состоянии - достаточно вспомнить лишь сложную концепцию о биологически оптимальной температуре и термически нейтральной зоне.

Накопленные факты позволяют надеяться на новый прогресс в будущем.


Список литературы

 

1. В.Г. Скопичев, Т.А. Эйсымонт, «Физиология животных и энтология» М.:КолосС, 2003г.

2. Иванов К.П. Основы энергетики организма. Т.1. Общая энергетика, теплообмен и терморегуляция. - Л.: Наука, 1990. - 307с.

3. Кульчицкий В.А. Функции вентральных отделов продолговатого мозга. -Минск: Навука i тэхшка, 1993. - 175с.

4. Макарук М.А. Мотузко Н.С. и др. Патология терморегуляции: учебно-методическое пособие для студентов факультета ветеринарной медицины и слушателей ФПК / М.А.

5. Макарук М-во сел. хоз-ва и продовольствия РБ, Учреждение образования Витеб. гос. акад. ветеринар. медицины Витебск [УО ВГАВМ], 2005

6. Нихельман М. Температура и жизнь. -Пер. с нем. Минск Полибиг, 2001

7. Турин B.H. Терморегуляция и симпатическая нервная система. - Минск: Навука i тэхнжа, 1989.- 231с.

8. Турин В.Н. Механизмы лихорадки. - Минск: Навука i тэхшка, 1993. -165с.

Содержание

 

Введение

1. Температура и жизнь

1.1 Температура влияет на все жизненно важные процессы

2. На пути к гомойотермии

2.1 Гомойотермные животные

2.2 Температура у насекомых

2.3 Терморегуляторное поведение рыб

2.4 Стабильная температурная регуляция у рептилий

3. Различная температура тела у гомойотермных животных

3.1 Температурные отношения в теле

3.2 Семенники нуждаются в охлаждении

3.3 Температурная чувствительность головного мозга

4. Терморегуляторные реакции

4.1 Испарение

4.2 Значение волос и перьев

5. Оптимальные температуры для гомойотермных

5.1 Механизмы функциональных влияний

5.2 Влияние приема пищи

5.3 Влияние теплопродукции

5.4 Влияние на образование гормонов

Заключение

Список литературы


Введение

 

Белок является необходимым компонентом живых организмов. Белки денатурируют при температуре выше 45°С и замерзают при 0°С, что нарушает процессы жизнедеятельности. Таким образом, теоретически жизнь возможна только в ограниченном диапазоне температур - от 0°С до 45°С. Однако в пустыне температура воздуха может подниматься до 65°С, а жизнь там. тем не менее возможна. В Арктике и Антарктике температура зимой снижается до -55°С, на северном полюсе - порой до -65°С, однако и там существуют высокоразвитые живые организмы. Жизнь в таких экстремальных условиях возможна потому, что у организмов в процессе эволюции сформировалась система терморегуляции, которая обеспечивает поддержание температуры тела даже при значительных изменениях температуры окружающей среды.

Приведем несколько примеров. Грызуны пустыни в жаркие дневные часы прячутся в глубокие норы под землей и вылезают на поверхность преимущественно ночью, когда окружающая температура опускается ниже +20°С. У полярных животных (белые медведи, полярные лисы), а также у человека, использующего мех этих животных, отдача тепла в окружающую среду невелика даже при -40°С.

Человек в сухой сауне выделяет до 2 литров пота в час и теряет, несмотря на высокую температуру окружающей среды, более 4000 килоджоулей тепла в результате испарения влаги. Комфортная температура для обнаженного человека составляет приблизительно +28°С. В экстремальных температурных условиях человек создает оптимальный микроклимат путем подбора соответствующей одежды, отопления комнат и др. Эскимосы, используя традиционные подходы, способны создавать для себя субтропический микроклимат. Следует констатировать, что человек, благодаря техническим достижениям и опыту, достиг практически высшей формы терморегуляторного поведения из всех живых существ.

За счет процессов адаптации область температур, в которой возможна оптимальная работоспособность животных, значительно варьирует. К примеру, для крупного рогатого скота температура внешней среды около 23°С является стрессовой термической нагрузкой, что может привести к значительному снижению продукции молока, в то время как зебры устойчивы к температуре около 32°С. Существуют многообразные механизмы, обеспечивающие идеальную адаптацию к высокой температуре окружающей среды. Так, короткие, тонкие и светлые волосы хорошо отражают лучи солнца теплового спектра. Прием пищи увеличивает энергозатраты и интенсивность теплопродукции, что влияет на количество и качество молока. С другой стороны, при высокой температуре хорошо утилизируются неудобоваримые, грубоволокнистые продукты питания. Это актуально тогда, когда имеется недостаток воды, или в пище содержится избыточное количество соли. В подобных ситуациях через почки и желудочно-кишечный тракт выделяется очень много воды при достаточно высокой секреции пота. При наличии длинных, стройных конечностей, больших ушей и хорошо кровоснабжаемых складок кожи в области шеи достаточное количество тепла может отдаваться в окружающую среду путем изменения транспорта тепла и теплопроводности. За счет этого нивелируется влияние повышенной температуры среды на температуру тела.

Системы, регулирующие температуру тела у позвоночных, формируются в ранней фазе филогенетического развития. Их постоянная оптимизация ведет к улучшению условий жизни животных и к адекватному развитию уровня обмена веществ.

Постоянная температура тела у млекопитающих создала предпосылки для стабильного функционирования центральной нервной системы, а это обеспечило превосходство этой группы животных над другими видами живых существ. В этом смысле совершенствование температурной регуляции может рассматриваться как часть истории эволюции


Температура и жизнь

Температура влияет на все жизненно важные процессы

 

Формы жизни на земле - результат химических процессов в животных и растительных клетках. В процессе эволюции в организмах на разнообразных уровнях развития сформировались иерархические структуры, которые объединили в определенных системах функциональные процессы и, в конечном итоге, обеспечили поддержание жизни. Только при анализе жизненных процессов на различных уровнях -молекулярном, клеточном, органном, системном, всего организма - можно осознать значимость терморегуляторных процессов. Как в человеческом обществе невозможно из поведения отдельных его граждан судить о сложных изменяющихся отношениях между учреждениями, организациями и устройствами государства, так и при взгляде на живую клетку под микроскопом невозможно сформировать представление о форме (виде, образе) животного, который происходит из таких клеток. Невозможно также только на основании биохимических реакций судить о структуре и функциях отдельной органной системы.

Эти соображения отчетливо подтверждаются таким примером. Убедительно доказано особое значение ионов кальция в функциональных процессах птиц и млекопитающих. Существуют регулирующие системы, которые обеспечивают строгое постоянство концентрации ионов кальция в плазме крови. Используя знания о том, что ионы кальция, содержащиеся в определенных структурах мышечных клеток, а именно, в саркоплазматическом ретикулюме, освобождаются при возникновении и распространении возбуждения, способствуя укорочению миофибрилл, можно заключить, что указанный процесс играет ключевую роль в процессе мышечного сокращения. Но всегда остается неясным, какие поведенческие реакции у животных способны вызвать эти сокращения, и какие адаптивные процессы с участием ионов кальция формируются в организме в ответ на внешние раздражения.

Итак, можно подвести итог. Для анализа феномена жизни важно как исследование поведенческих процессов, так и изучение обмена кальция в отдельной клеточной органелле. При этом можно заметить, что реакции, протекающие на высоком функциональном уровне, иногда приобретают новый качественный уровень и не всегда представляют арифметическую сумму процессов, протекающих на более низком уровне, несмотря на то, что обменные реакции всегда определяются взаимодействиями на уровне молекул. Это означает, что все жизненно важные процессы, протекающие на каждом из функциональных уровней, всегда взаимосвязаны и зависят от температуроно зависимых химических и биологических процессов.

Если поднять температуру в организме животных на 10°К, то теоретически скорость реакции обменных процессов возрастает от 2-х до 4-х раз. При этом имеется в виду подъем скорости процессов в пробирке, а не в живом организме. Биохимические обменные реакции катализируются ферментами, а энзиматическая активность зависит от температуры окружающей среды. Таким образом, без учета влияния других физических факторов внешней среды можно модифицировать жизненные процессы за счет изменения температуры.

Жизнь животных возможна только в ограниченном диапазоне температур. Падение температуры в клетке ниже 0°С ведет к замерзанию клеточной воды. Следствием кристаллизации воды являются функциональные изменения в клеточной мембране, кроме того выраженно тормозятся или угнетаются все биохимические реакции. Подъем температуры в клетках до значений от 44 до 45°С ведет к денатурации большинства белков, а это ведет к смерти животного. Несмотря на это, животные адаптировались и живут во всех климатических зонах земли. Это стало реальным, так как уже на ранних этапах эволюции сформировались системы, регулирующие температуру тела и позволяющие животным поддерживать оптимальные ее значения, отличающиеся от температуры окружающей среды и обеспечивающие протекание жизненно важных биохимических процессов в конкретных климатических условиях каждого биотопа.

Все живущие в настоящее время виды животных могут более или менее хорошо регулировать температуру своего тела. Это стало возможным благодаря образованию в процессе отбора высокоэффективных систем, регулирующих температуру, значение которых чрезвычайно высоко для процессов эволюции, поскольку температура тела, отклоняясь от оптимума, способна оказывать выраженное влияние на жизненно важные процессы. Так, интервал генерации новых поколений составляет у коли-бактерий (Escherichia coli) при температуре около 13°С более трех с половиной часов, а при температуре в 45°С менее 20 минут.

Постоянная температура тела предоставляет организму два очевидных преимущества. Она обеспечивает стабильное протекание всех обменных процессов и гарантирует, что биохимические реакции могут управляться за счет изменения концентрации субстратов (без соответствующего влияния температурных условий). Очевидные биологические преимущества эффекторных систем, регулирующих температуру, так значительны, что допускают даже увеличение затрат энергии в рамках этой регуляции.

 


На пути к гомойотермии

Гомойотермные животные

 

Гомойотермные животные (от греч. hómoios — сходный, одинаковый и thérmë— тепло), животные с постоянной, устойчивой температурой тела, почти не зависящей от температуры окружающей среды. К Г. ж. относятся птицы и млекопитающие. Характерная черта Г. ж. — наличие у них механизмов терморегуляции — химической (регуляция продукции тепла в организме) и физической (регуляция отдачи тепла во внешнюю среду).

 

Температура у насекомых

 

Системы, регулирующие температуру у насекомых, изучены лучше, чем у других беспозвоночных, с одной стороны, очевидно, в результате того, что у насекомых имеются многообразные терморегуляторные возможности. С другой стороны, это определяется несомненной простотой в содержании насекомых, что упрощает экспериментальные условия при проведении опытов. Большинство насекомых эндотермны. Однако некоторые виды насекомых, такие как бражники, пчелы и шмели могут в период подготовки к полету проявлять поведение, напоминающее эндотермных существ.

У всех видов насекомых развиты сложно функционирующие терморецепторы, расположенные на туловище, антеннах и конечностях. Кроме того, обнаружены чувствительные к температуре клетки в торакальных ганглиях. Так, к примеру, в условиях охлаждения второго и третьего торакальных сегментов у моли (Hyalophora) наблюдается прекращение ритмических движений мускулатуры, обеспечивающей полет насекомого. Вместо координированных движений отмечаются хаотичные подергивания, сопровождающиеся скрежетом (типа свиста) и напоминающие по своему характеру мышечную дрожь у плацентарных существ и птиц. Если грудные ганглии вновь согреть до оптимальной температуры, то, несмотря на низкую температуру окружающей среды, у моли прекращается мышечная дрожь и предпринимаются попытки взлететь.

Терморецепторы эндотермных насекомых, к которым, например относятся мухи и цикады, участвуют в координации терморегуляторного поведения. Насекомые лишь тогда проявляют двигательную активность ее и температура тела возрастает до I7-20T. В ночные часы они впадают в оцепенение, из которого выходят, когда температура воздуха после подъема солнца начинает повышаться. Различные виды кузнечиков располагают свое тело поперек направления солнечных лучей, что позволяет им в большей степени воспринимать энергию солнца и в течение короткого времени поднять температуру тела выше температуры окружающей среды. В течение дня они изменяют положение своего тела и, таким образом, регулируют теплопоглощение и теплоотдачу. Изменение температуры тела в течение дня позволяет кузнечикам развивать максимальную двигательную активность.

Эндотермные насекомые увеличивают перед полетом свою теплолопродукцию за счет ритмических сокращений летательной мускулатуры, в связи с чем температура во всей области грудной стенки и особенно, летательной мускулатуры, повышается"- Обычно при этом сокращаются одновременно обе группы летательной мускулатуры (сгибатели и разгибатели). Крылья при этом почти не движутся, или эти движения минимальны. В таких случаях температура грудной клетки достигает 40-41°С, что происходит за счет теплопродукции во время сокращений мускулатуры. Во время полета температура тела насекомых может лежать в широкой области окружающих температур - у шмелей она поддерживается на уровне от 10 до 25°С. Это возможно в результате того, что насекомые способны изменять как свою теплопродукцию, так и теплоотдачу. Чешуекрылые, бабочки, к примеру, переходят за счет соответствующего изменения положения крыльев от активного полета к скольжению и продукции при этом меньшего количества тепла.

Грудная клетка эндотермных насекомых за счет толстого, многочисленного волосяного покрова хорошо изолирована. Как только температура их грудной клетки превышает 40°С, сосуды кровеносной системы спины начинают ритмически сокращаться и перемещать холодную кровь из брюшной в грудную полость; температура груди за счет этого снижается. Прежде, чем кровь возвратится в сосуды спины, она на своем пути проходит через открытые участки тела, где охлаждается окружающей температурой, что также приводит к снижению температуры грудной клетки. Некоторые виды насек


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.112 с.