Основные характеристики и размерения судна — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Основные характеристики и размерения судна

2020-04-01 238
Основные характеристики и размерения судна 0.00 из 5.00 0 оценок
Заказать работу

СОДЕРЖАНИЕ

 

1.Введение

1.1. Основные характеристики и размерения т/х «Андрей Бубнов»

1.2. Грузовместимость и грузоподъемность судна

2. Контроль и регулирование плавучести и посадки

3. Контроль и регулирование остойчивости судна

3.1. Построение диаграммы статической остойчивости

3.2. Построение диаграммы динамической остойчивости

3.3. Расчет общей продольной остойчивости

4. Контроль и обеспечение непотопляемости судна

5. Качка и безопасное штормование судна

5.1. Расчет амплитуды качки

5.2. Определение опрокидывающего момента с учетом б.к

5.3. Особенности плавания в штормовую погоду

6. Контроль и регулирование прочности корпуса судна

7. Контроль и регулирование движения судна

7.1. Двигатели и движители

8. Заключение

9. Используемая литература


Вступление

 

Современное морское судно представляет собой сложное в конструктивном плане сооружение, которое в процессе эксплуатации подвергается одновременному воздействию двух движущихся сред – воды и воздуха.

Каждое судно характеризуется навигационными (мореходными) и эксплуатационно-экономическими качествами.

К навигационным качествам судна относят:

· плавучесть — способность судна плавать в требуемом положении относительно поверхности воды при заданной нагрузке;

· остойчивость — способность судна, наклоненного внешними сила­ми, возвращаться в исходное положение равновесия после прекращения их действия;

· непотопляемость — способность судна оставаться на плаву и сохра­нять необходимую остойчивость после затопления одного или не­скольких отсеков корпуса;

· ходкость — способность судна развивать заданную скорость в опре­деленных путевых условиях при затрате минимально необходимой мощности энергетической установки;

· управляемость — способность судна сохранять заданное направле­ние движения или изменять его в соответствии с желанием судоводите­ля;

· плавность качки — способность судна при плавании на взволнован­ной воде раскачиваться с возможно меньшей частотой и амплитудой;

· прочность — способность корпуса судна не разрушаться и не изме­нять своей формы под действием внешних сил, появляющихся при экс­плуатации.

К эксплуатационно-экономическим качествам судна относят сле­дующие:

· Грузоподъемность — масса груза, принимаемого на борт судна при заданной высоте надводного борта. Различают дедвейт — предельную грузоподъемность судна, при которой его осадка соответствует установ­ленной грузовой марке, и чистую грузоподъемность - предельную массу груза, которую может принять судно, погруженное по грузовую марку, при необходимом запасе топлива, питьевой воды, продовольст­вия и наличия на борту полного экипажа.

· Грузовместимость — объем помещений (трюмов) судна, предназна­ченных для размещения груза. Валовая вместимость — объем помеще­ний судна, определяемый по специальным Правилам обмера и служа­щий для расчета сбора в портах. При этом учитывается объем всех помещений под верхней палубой, в надстройках и рубках, за исключе­нием междудонного пространства, топливных и балластных цистерн. Чистая вместимость учитывает объем только коммерчески эксплуати­руемых помещений. Валовая и чистая вместимости измеряются в реги­стровых тоннах, являющихся единицами объема: 1 рег. т = 2,83 м3 (100 фут3).

Основными задачами, стоящими перед мореплавателями и перед всем морским транспортом Украины является обеспечение своевременной доставки грузов морем согласно действующим рейсовым план-графиком и безаварийность плавания.

Остойчивость судна должна быть проверена перед выходом в море и должна удовлетворять требованиям Регистра и «Правилом безопасности морской перевозки грузов».

Теплоход «Андрей Бубнов» был построен в 1976 году и спущен на воду под названием «Волго – Балт 197», в последствии был передан АСК «Укрречфлот» и переименован – «Андрей Бубнов».

Утверждая неизменный статус Украины как морской державы, Компания АСК «Укрречфлот» стремится максимально удовлетворить спрос партнеров на фрахтовом рынке, гарантируя при этом своевременную и качественную перевозку, переработку и хранение грузов по схеме "от двери до двери". Компания имеет статус национального перевозчика Украины и сертифицирована на соответствие международному стандарту качества ISO 9001. За 35 лет успешной деятельности на Европейском фрахтовом рынке АСК "Укрречфлот" превратилась в мощную корпорацию, в состав которой входят более 200 грузовых и пассажирских судов различного класса и назначения, которые в 2004 году перевезли 9 млн. тонн различных грузов, 7,0 тысяч круизных туристов и около 1,7 млн. пассажиров. Это составляет более 55 % от общего объема перевозок, осуществляемых всем морским и речным транспортом Украины. Регион работы нашего грузового и пассажирского флота - порты более чем сорока стран Волжского, Днепровского, Дунайского, Черноморско-Азовского, Средиземноморского, Балтийского, Северного и других бассейнов Мирового океана. Помимо флота, в состав "Укрречфлота" также входят Херсонский, Николаевский, Днепропетровский, Запорожский и Черниговский речные порты; страховая, экспедиторская, фрахтовая, брокерская и агентские компании; туристическое бюро, судоремонтно-судостроительные предприятия на Днепре и Дунае.

Освидетельствование судов в эксплуатации является составной частью классификационной деятельности, заключается в проверке соответствия судна правилам и включает в себя как минимум:

· проверку наличия согласованной технической документации, сертификатов на материалы и комплектующие изделия, актов службы технического контроля организации, актов судовладельца, актов предыдущих освидетельствований;

· наружный осмотр, измерения, проверку в действии и испытания;

· оформление и выдачу документов Речного Регистра.

Каждое судно ставится на классификационный учет инспекции:

1) после постройки судна;

2) после смены пункта приписки и перехода в связи с этим в район деятельности другой инспекции;

3) при переходе в класс Морского Регистра из класса другой классификационной организации;

4) если судно ранее было снято с учета или не состояло на учете какой-либо инспекции;

5) при смене судовладельца.

На судне должен храниться акт о проверке судовладельцем пригодности судна к эксплуатации перед началом навигации.

 

Расчет амплитуды качки

 

Амплитуда качки судна рассчитывается по формуле


                       q r = 109 k * x 1 * x 2 * r * S

 

где k – коэффициент учитывающий влияние скуловых килей, k = 1 (скуловые кили отсутствуют).

x1 – безразмерный множитель, зависящий от отношения ширины судна к осадке (В/d):

 

B/d = 13/3,63 = 3,58 по табл. 2.1.3.1-1[3] x1 = 0,79

 

x2 – безразмерный множитель, зависит от коэффициента полноты сВ

 

где сВ = V/LBT = D/gLBT = 4460/1,025*110*13*3,63 = 0,84

 

по табл. 2.1.3.1-2[3] для сВ > 0,7 x2 = 1,0

 

r – параметр определяемый по формуле:

 

r = 0,73 * 0,6(zq – d)/d = 0,73 + 0,6 ((3,51 -3,63)/3,63) = 0,71

 

S – безразмерный множитель, зависит от района плавания и периода качки Т


Т = 2сВ/   h

 

где с = 0,373 + 0,023 В/d – 0,043 L/100 = 0,373 + 0,023(13/3,63) -0,043* *(110/100) = 0,408


 Т = 2 * 0,408 *13/  2,26 = 7,07

 

по табл. 2.1.3.1-3[3] для Т = 7,07 S = 0,098 при неограниченном районе плавания.

     
 


 qr = 109 * 1 *0,79 *1 * 0,71* 0,098 = 22,7o

 

T = 7,07

qr = 22,7o

 

Качки.

 

На диаграмме динамической остойчивости (рис.8) вправо начала координат откладываем r – амплитуду качки динамической остойчивости в точке А1

 

Через точку А1 проводим прямую, перпендикулярную оси абсцисс и на ней откладываем отрезок АА1 = 2 q r..

 

Полученная точка А будет начальной для кривой динамической остойчивости.

 

Из начала (точка А) проводим касательную к диаграмме динамической остойчивости. Отрезок АА1 продлеваем до пересечения с вертикалью из точки на абсциссе 1 рад (57,3о).

 

Эта вертикаль пересекается с касательной к кривой в точке В. Отрезок ВС равен плечу опрокидывающего момента ВС.

 

 ВС = 0,85 м lqопр = 0,85 м

 

Определим опрокидывающий момент с учетом качки:

 

 Мопрmin = D * lqопр = 4460*0,85 = 3790 нм

 

 Мопрmax = D * lqопр*q = 4460*0,85*9,8 = 37800 нм

 

 

Двигатели и движители.

 

Двигатели, с помощью которых судно приво­дится в движение, называются главными. Главные двигатели вме­сте с оборудованием, необходимым для их работы, составляют главную энергетическую установку судна.

На морских судах в качестве главных двигателей устанавли­вают двигатели внутреннего сгорания (дизели), реже — паровые и газовые турбины. На судах старой постройки сохранились паро­вые машины. Все перечисленные двигатели являются тепловыми, т. е. вырабатывают механическую энергию из тепловой. Теплота выделяется при сгорании нефтяного топлива или, в атомных уста­новках, при делении атомных ядер.

Тепловые двигатели различают по роду рабочего тела, при рас­ширении которого теплота превращается в работу. В двигателях внутреннего сгорания и газовых турбинах рабочим телом служит смесь газов, получаемая при сгорании топлива. В паровых маши­нах и турбинах рабочим телом служит водяной пар.

Судовые дизели. Двигатель, в котором топливо сгорает непо­средственно внутри рабочего цилиндра, называется двигателем внутреннего сгорания. Если при этом воспламенение топлива осу­ществляется за счет температуры сжатия воздушного заряда, дви­гатель называется дизелем. Смесь газов, образующихся при сго­рании топлива, имеет высокое давление и температуру. Расширя­ясь внутри цилиндра, газы перемещают поршень и движение его передается через кривошипно-шатунный механизм коленчатому валу. Для получения большей мощности и равномерного вращения вала двигатели делаются многоцилиндровыми. Мощ­ность судовых дизелей бывает самой различной: от нескольких десятков лошадиных сил — на небольших катерах до 30—40 тыс. л. с.— на крупнотоннажных судах.

Основные достоинства дизеля перед другими двигателями — наименьший расход топлива (150—180 г/л с.-ч) и сравнительно небольшое вспомогательное оборудование. За счет меньших запа­сов топлива и меньших размеров машинного отделения увеличива­ется полезная грузоподъемность судна. Однако при мощности свы­ше 10—20 тыс. л. с. установка становится громоздкой и не всегда выгоднее турбинной.

Судовые паровые турбины работают на ином принципе. Свежий пар подводится в направляющий аппарат (сопло), где расширяется и приобретает большую скорость. Из сопла струя па­ра направляется на рабочие лопатки турбинного диска, который жестко закреплен на валу. Передавая лопаткам свою энергию, пар заставляет диск, а вместе с ним и вал вращаться со скоростью нескольких тысяч оборотов в минуту. Направляющий аппарат и диск с лопатками называются ступенью турбины. Рассмотренная простейшая турбина является одноступенчатой.

Главные турбины делаются многоступенчатыми. Ступени обыч­но размещают в двух корпусах — турбине высокого дав­ления (ТВД) и турбине низкого давления (ТНД). Отработав последовательно во всех ступенях, пар выпускается из ТНД в кон­денсатор. Полученная пресная вода снова направляется в глав­ные котлы для образования пара. Мощность обеих турбин пере­дается на гребной винт через зубчатый редуктор, с которым тур­бины образуют единый главный турбозубчатый агрегат (ГТЗА). Для осуществления реверса в корпусе ТНД установлена турбина заднего хода (ТЗХ).

Паротурбинные установки уступают дизельным в экономично­сти (расход топлива 180—250 г/л. с.-ч.), но могут быть построены на большую мощность при сравнительно небольших габаритах. Благодаря равномерному вращению вала турбины отличаются ис­ключительно малым износом деталей.

Паровые турбины применяют в основном на крупных судах, где требуется мощность более 10—20 тыс. л. с, а также на судах с атомными реакторами. Мощность существующих ГТЗА достигает 70—80 тыс. л. с, причем на судне иногда устанавливают до четы­рех таких агрегатов.

Судовые газовые турбины. Принцип работы простейшей газо­турбинной установки (ГТУ) показан на рис. 25. Воздух из атмо­сферы засасывается компрессором, сжимается и затем подается в камеру сгорания, куда одновременно впрыскивается топливо. Об­разующиеся при сгорании топлива газы поступают в турбину и приводят ее в движение. Турбина вращает компрессор и гребной винт.

Компрессор, камера сгорания и турбина собираются в единый агрегат. Для первоначального раскручивания турбины служит пусковой электродвигатель, питающийся током от вспомогатель­ного дизель-генератора. Реверс осуществляется обычно с помощью винта регулируемого шага.

Судовые ГТУ по экономичности близки к паровым турбинам, а по весу и габаритам — наиболее легкие и компактные из всех применяемых двигателей. Мощность судовых ГТУ достигает 30 тыс. л. с. в агрегате. На морских судах ГТУ стали применять сравнительно недавно, по мере накопления опыта эксплуатации и совершенствования конструкций они должны получить значи­тельное распространение.

Судовые атомные установки. Источником тепловой энергии в этих установках служит атомный реактор, в котором происходит деление ядер урана и других расщепляющихся материалов. На рис. 26 показана схема атомной энергетической установки ледоко­ла «Ленин». Установка выполнена двухконтурной. В первом кон­туре теплоносителем служит обычная дистиллированная вода под высоким давлением, циркулирующая через реактор. Теплота, вы­деленная в результате атомной реакции, непрерывно отводится этой водой в парогенераторы, где вырабатывается пар второго контура, используемый для работы четырех главных турбин мощ­ностью по 11 тыс. л. с.

Каждая турбина приводит в действие через редуктор два гене­ратора постоянного тока напряжением 600 В. Через главный рас­пределительный щит электроэнергия питает средний гребной элект­родвигатель мощностью 19,6 тыс. л. с. и два бортовых по 9,8 тыс. л. с. Для защиты экипажа от вредных излучений реакторы и все агрегаты первого контура окружены надежной биологической за­щитой из слоя воды и стальных плит.

Основное преимущество судов с атомными установками — практически неограниченная дальность плавания без пополнения запасов топлива. Суточный расход ядерного горючего не превы­шает нескольких десятков граммов, а смену тепловыделяющих элементов в реакторах можно производить один раз в два-три года.

Передачи. Мощность главных двигателей может передаваться на гребной винт посредством прямой, зубчатой или электрической передачи (рис. 27).

Прямая передача представляет собой валопровод, со­стоящий из нескольких соединенных в одну линию валов, лежащих в опорных подшипниках. Наиболее ответственные узлы валопровода — главный упорный подшипник и дейдвудное устройство. Глав­ный упорный подшипник воспринимает упорное давление, созда­ваемое гребным винтом, и передает его корпусу судна. Дейдвудное устройство служит опорой для концевого (дейдвудного) вала и одновременно уплотнением места выхода вала наружу.

Прямая передача самая простая и распространенная. Однако она применима в основном при малооборотных двигателях, так как у большинства судов наибольший к. п. д. "гребного винта достига­ется при частоте вращения 100—200 об/мин.

Если дизель или турбина имеет большую частоту вращения, чем требуется для винта, применяют зубчатую передачу, при которой между двигателем и валопроводом включен понижающий зубчатый редуктор. Быстроходные двигатели при равной мощности имеют меньшие размеры и массу, поэтому, несмотря на наличие ре­дуктора, установка в целом получается более компактной и лег­кой. Достоинством передачи является и то, что она позволяет ра­ботать на один винт нескольким двигателям, часть из которых можно при желании отключать с помощью гидромуфт. Однако в зубчатой передаче теряется 2—3% полезной мощности.

При электрической передаче главные дизели или тур­бины приводят в движение генераторы, а электроэнергия от них питает гребные электродвигатели, которые вращают винты. Элект­ропередача обеспечивает судну высокие маневренные качества, по­этому широко применяется на ледоколах, ледокольно-транспортных судах, паромах, буксирах-спасателях, на некоторых пассажирских судах. Недостаток передачи — сложность оборудования, значитель­ная потеря мощности (10—15%).

Судовым движителем называется специальное устройство для пре­образования работы главного двигателя или другого источника энер­гии в полезную тягу, которая обеспечивает поступательное движение судна.

К судовым движителям относят гребные винты, гребные колеса, водометные и крыльчатые движители.

Гребной винт представляет собой гидравлический механизм, лопа­сти которого захватывают забортную воду и сообщают ей дополнитель­ную скорость в направлении, противоположном движению судна. При этом гидродинамические силы, возникающие на лопастях, создают осе­вую равнодействующую силу, называемую упором движителя. Упор движителя передается корпусу судна через жестко связанный с ним упорный подшипник.

Основными характеристиками винта являются:

диаметр — диаметр окружности, описываемой наиболее уда­ленными от оси точками лопастей; у крупных судов диаметр вин­тов может достигать 8—10 м;

шаг — расстояние, которое прошел бы винт за один оборот в плотной среде, при отсутствии скольжения. По величине шаг вин­та близок его диаметру;

частота вращения — число оборотов в минуту на расчетном режиме, при котором винт имеет наибольший к. п. д.; у крупных и средних судов — 100—200 об/мин, у небольших — 500 об/мин и более.

По направлению вращения различают винты правого и левого вращения. Винт правого вращения при переднем ходе вращает­ся по часовой стрелке (если смотреть с кормы в нос). У такого винта, если взгляд наблюдателя направлен перпендикулярно дис­ку винта, правые кромки верхних лопастей расположены дальше, чем левые. У винта левого вращения — наоборот.

Одновинтовые суда чаще имеют винт правого вращения. Двух­винтовые суда для лучшей управляемости оборудуются винтами разного вращения.

По конструкции гребные винты делятся на винты фиксирован­ного и регулируемого шага.

Винты фиксированного шага (ВФШ) — это обычные винты с неизменяемым шагом. Они бывают цельнолитыми или со съемны­ми лопастями. Цельнолитые винты проще в изготовлении, имеют более высокий к. п. д., а потому и самые распространенные. Вин­ты со съемными лопастями применяют главным образом у судов ледового плавания, у которых возможны более частые поломки лопастей. Ступицы и лопасти таких винтов делают стальными.

Винты регулируемого шага (ВРШ) в отличие от ВФШ имеют полую ступицу увеличенного диаметра; в ней размещен механизм, с помощью которого можно поворачивать лопасти вокруг их вер­тикальной оси и тем самым изменять шаг винта. Управляют ме­ханизмом поворота лопастей с мостика посредством привода, рас­положенного в валопроводе.

Конструкция ВРШ позволяет, не изменяя направление и час­тоту вращения винта, осуществлять реверс (задний ход), удержи­вать судно на месте, устанавливать наиболее выгодный шаг винта для разных режимов работы судна. Все это делает судно более маневренным, значительно снижает расход топлива на перемен­ных режимах. Важным достоинством является и то, что ВРШ позволяет применить на судне нереверсивный главный двигатель.

Поэтому, несмотря на сложность конструкции, ВРШ широко используются на промысловых судах, буксирах, паромах, а в по­следние годы —и на крупных транспортных судах. На новых тан­керах типа «Крым» установлен ВРШ диаметром 7,5 м.

 

Если скорость набегающего на винт потока vр (рис. 20), а радиаль­ная скорость юг, то угол атаки данного элемента сечения лопасти л оп­ределяется углом между результатирующей скоростью v1 и линией нулевой подъемной силы (ЛНПС). Подъемная сила и сила лобового со­противления сводятся к результирующей силе Yв. Одна из ее проекций дает силу полезного упора винта РВ, а вторая — силу сопротивления вращению RBP. Момент силы RBP относительно оси гребного винта пре­одолевается главным двигателем судна.

Гребные винты имеют относительно малую массу, небольшие разме­ры, надежны в эксплуатации, недороги в изготовлении и позволяют ис­пользовать большинство малооборотных главных двигателей без редукторных передач; их КПД достигает 70 %.

 

Рис. 20. Схема действия гребного винта

 

Заключение

 

«Информация об остойчивости» является судовым документом, предназначенным для капитана и судового командного состава в качестве руководства при решении вопросов связанных с практической оценкой безопасности плавания судна при перевозке навалочных грузов.

Данная работа показывает мореходные качества т/х «Андрей Бубнов» и мероприятия по обеспечению безопасного плавания. При данной загрузке судна произведен расчет статической и динамической остойчивости, расчет амплитуды качки, определение опрокидывающего момента, расчет общей продольной остойчивости, рассчитана посадка судна.

 

Ход судна n, об/мин  мощность ГД, кВт V, уз. в грузу
ПСМ 50 318 4,3
ПМ 70 458 6,2
ПС 90 643 8,7
ППм 120 872 11,8
ПП 140 1020 13,8

ЛИТЕРАТУРА

 

1. Н.Г. Смирнов «Теория и устройство судна», М., 1992.

2. А.А. Антонов «Устройство морского судна», М., 1974

3. А.Д. Дидык и др. «Управление судном и его техническая эксплуатация», М., 1990.

4. Г.Г. Ермолаева «Справочник капитана дальнего плавания», М., 1988.

СОДЕРЖАНИЕ

 

1.Введение

1.1. Основные характеристики и размерения т/х «Андрей Бубнов»

1.2. Грузовместимость и грузоподъемность судна

2. Контроль и регулирование плавучести и посадки

3. Контроль и регулирование остойчивости судна

3.1. Построение диаграммы статической остойчивости

3.2. Построение диаграммы динамической остойчивости

3.3. Расчет общей продольной остойчивости

4. Контроль и обеспечение непотопляемости судна

5. Качка и безопасное штормование судна

5.1. Расчет амплитуды качки

5.2. Определение опрокидывающего момента с учетом б.к

5.3. Особенности плавания в штормовую погоду

6. Контроль и регулирование прочности корпуса судна

7. Контроль и регулирование движения судна

7.1. Двигатели и движители

8. Заключение

9. Используемая литература


Вступление

 

Современное морское судно представляет собой сложное в конструктивном плане сооружение, которое в процессе эксплуатации подвергается одновременному воздействию двух движущихся сред – воды и воздуха.

Каждое судно характеризуется навигационными (мореходными) и эксплуатационно-экономическими качествами.

К навигационным качествам судна относят:

· плавучесть — способность судна плавать в требуемом положении относительно поверхности воды при заданной нагрузке;

· остойчивость — способность судна, наклоненного внешними сила­ми, возвращаться в исходное положение равновесия после прекращения их действия;

· непотопляемость — способность судна оставаться на плаву и сохра­нять необходимую остойчивость после затопления одного или не­скольких отсеков корпуса;

· ходкость — способность судна развивать заданную скорость в опре­деленных путевых условиях при затрате минимально необходимой мощности энергетической установки;

· управляемость — способность судна сохранять заданное направле­ние движения или изменять его в соответствии с желанием судоводите­ля;

· плавность качки — способность судна при плавании на взволнован­ной воде раскачиваться с возможно меньшей частотой и амплитудой;

· прочность — способность корпуса судна не разрушаться и не изме­нять своей формы под действием внешних сил, появляющихся при экс­плуатации.

К эксплуатационно-экономическим качествам судна относят сле­дующие:

· Грузоподъемность — масса груза, принимаемого на борт судна при заданной высоте надводного борта. Различают дедвейт — предельную грузоподъемность судна, при которой его осадка соответствует установ­ленной грузовой марке, и чистую грузоподъемность - предельную массу груза, которую может принять судно, погруженное по грузовую марку, при необходимом запасе топлива, питьевой воды, продовольст­вия и наличия на борту полного экипажа.

· Грузовместимость — объем помещений (трюмов) судна, предназна­ченных для размещения груза. Валовая вместимость — объем помеще­ний судна, определяемый по специальным Правилам обмера и служа­щий для расчета сбора в портах. При этом учитывается объем всех помещений под верхней палубой, в надстройках и рубках, за исключе­нием междудонного пространства, топливных и балластных цистерн. Чистая вместимость учитывает объем только коммерчески эксплуати­руемых помещений. Валовая и чистая вместимости измеряются в реги­стровых тоннах, являющихся единицами объема: 1 рег. т = 2,83 м3 (100 фут3).

Основными задачами, стоящими перед мореплавателями и перед всем морским транспортом Украины является обеспечение своевременной доставки грузов морем согласно действующим рейсовым план-графиком и безаварийность плавания.

Остойчивость судна должна быть проверена перед выходом в море и должна удовлетворять требованиям Регистра и «Правилом безопасности морской перевозки грузов».

Теплоход «Андрей Бубнов» был построен в 1976 году и спущен на воду под названием «Волго – Балт 197», в последствии был передан АСК «Укрречфлот» и переименован – «Андрей Бубнов».

Утверждая неизменный статус Украины как морской державы, Компания АСК «Укрречфлот» стремится максимально удовлетворить спрос партнеров на фрахтовом рынке, гарантируя при этом своевременную и качественную перевозку, переработку и хранение грузов по схеме "от двери до двери". Компания имеет статус национального перевозчика Украины и сертифицирована на соответствие международному стандарту качества ISO 9001. За 35 лет успешной деятельности на Европейском фрахтовом рынке АСК "Укрречфлот" превратилась в мощную корпорацию, в состав которой входят более 200 грузовых и пассажирских судов различного класса и назначения, которые в 2004 году перевезли 9 млн. тонн различных грузов, 7,0 тысяч круизных туристов и около 1,7 млн. пассажиров. Это составляет более 55 % от общего объема перевозок, осуществляемых всем морским и речным транспортом Украины. Регион работы нашего грузового и пассажирского флота - порты более чем сорока стран Волжского, Днепровского, Дунайского, Черноморско-Азовского, Средиземноморского, Балтийского, Северного и других бассейнов Мирового океана. Помимо флота, в состав "Укрречфлота" также входят Херсонский, Николаевский, Днепропетровский, Запорожский и Черниговский речные порты; страховая, экспедиторская, фрахтовая, брокерская и агентские компании; туристическое бюро, судоремонтно-судостроительные предприятия на Днепре и Дунае.

Освидетельствование судов в эксплуатации является составной частью классификационной деятельности, заключается в проверке соответствия судна правилам и включает в себя как минимум:

· проверку наличия согласованной технической документации, сертификатов на материалы и комплектующие изделия, актов службы технического контроля организации, актов судовладельца, актов предыдущих освидетельствований;

· наружный осмотр, измерения, проверку в действии и испытания;

· оформление и выдачу документов Речного Регистра.

Каждое судно ставится на классификационный учет инспекции:

1) после постройки судна;

2) после смены пункта приписки и перехода в связи с этим в район деятельности другой инспекции;

3) при переходе в класс Морского Регистра из класса другой классификационной организации;

4) если судно ранее было снято с учета или не состояло на учете какой-либо инспекции;

5) при смене судовладельца.

На судне должен храниться акт о проверке судовладельцем пригодности судна к эксплуатации перед началом навигации.

 

Основные характеристики и размерения судна

 

Тип судна – стальное, однопалубное, двухвинтовое грузовое судно, без седловатости, с двойным дном, двойными бортами. С баком и ютом, с машинным отделением и рубками, расположенными корме, с 4 грузовыми трюмами.

Название – «Андрей Бубнов»

Назначение – перевозка навалочных и генеральных грузов.

Класс – КМ * Л4 М-СП

Год постройки – 1976, г. Комарно, Чехословакия.

Запасы 100% - 180 тонн, включая 110 тонн топлива.

Длина наибольшая – 114 м.,

Ширина – 13 м.,

Высота борта – 5,5 м.,

Осадка по гр.м. в сол. Воде – 3,63 м.,

Осадка в балласте – 2,55 м.,

Водоизмещение по гр.м. – 4460 т.,

Дедвейт – 3208 т.,

Водоизмещение порожнем – 1252 т.,

Мощность СЭУ – N = 1020 кВт.,

Скорость в грузу – 13,8 уз.

Экипаж – 15 человек.

 


Поделиться с друзьями:

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.127 с.