Материальные носители из дерева — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Материальные носители из дерева

2019-11-28 262
Материальные носители из дерева 0.00 из 5.00 0 оценок
Заказать работу

Другим материалом растительного происхождения, использовавшимся, главным образом, в экваториальной зоне была тапа. Она изготавливалась из бумажного шелковичного дерева, в частности, из лыка, луба. Лыко промывалось, очищалось от неровностей, затем отбивалось молотком, разглаживалось и просушивалось. Знаки наносились процарапыванием. Римляне в самую раннюю пору своей истории, когда письменность только входила у них в употребление, писали на древесном лыке. Носители информации римского письма на этом материале не сохранились, но ближайшим аналогом могут, по-видимому, послужить берестяные грамоты.

 

 

Береста  

В поисках более практических носителей информации люди пробовали писать на дереве, его коре, листьях, коже, металлах, кости. В странах с жарким климатом часто использовали высушенные и покрытые лаком пальмовые листья. На Руси же самым распространенным материалом для письма была береста - определенные слои коры березы. Так называемая берестяная грамота. Подготовка бересты к процессу записи была не сложной. Предварительно ее кипятили, затем соскабливали внутренний слой коры и обрезали по краям. В результате получался материал основы документа в виде ленты или прямоугольника. Обычно использовалась для письма внутренняя сторона бересты, более гладкая. Грамоты сворачивались в свиток. При этом текст оказывался с наружной стороны. Тексты берестяных писем выдавливались с помощью специального инструмента - стилоса, изготовленного из железа, бронзы или кости.

Ткань

Для больших текстов древние римляне использовали ткани. Древнейшие религиозные тексты, содержавшие, как можно предполагать, описание обрядов при жертвоприношении, назывались «либрилинтеи», льняные книги. Они сохранились в храме Юноны Монеты.

Как и в других странах, в Юго-Восточной Азии испробовали множество разных способов записи и сохранения информации: 1. Выжигание на узких бамбуковых пластинах со скреплением шнурами в «бамбуковые книги» (недостаток - занимают много места, низкая износостойкость шнуров);

Бумага

В начале II века н.э. появляется бумага (предположительно от итал. Bambagia - хлопок) - материал в виде листов для письма, рисования, упаковки и т. п., получаемый из целлюлозы,  из растений, а также из вторсырья (тряпья и макулатуры). Китайские летописи сообщают, что бумага была изобретена в 105 году н. э. Цай Лунем. Однако в 1957 году пещере Баоця северной провинции Китая Шаньси обнаружена гробница, где были найдены обрывки листов бумаги. Бумагу исследовали и установили, что она была изготовлена во II веке до н.э. До Цай Луня бумагу в Китае делали из пеньки, а еще раньше из шелка, который изготавливали из бракованных коконов шелкопряда. Цай Лунь растолок волокна шелковицы, древесную золу, тряпки и пеньку. Все это он смешал с водой и получившуюся массу выложил на форму (деревянная рама и сито из бамбука). После сушки на солнце, он эту массу разгладил с помощью камней. В результате получились прочные листы бумаги.

После изобретения, процесс производства бумаги стал быстро совершенствоваться. Стали добавлять для повышения прочности крахмал, клей, естественные красители и т. д.

В VI-VIII веках производство бумаги осуществлялось в Средней Азии, Корее, Японии и других странах Азии. В XI-XII веках бумага появилась в Европе, где вскоре заменила животный пергамент. С XV-XVI веков, в связи с введением книгопечатания, производство бумаги быстро растет. Бумага изготовлялась весьма примитивно - ручным размолом массы деревянными молотками в ступе и вычерпкой ее формами с сетчатым дном.

Большое значение развития производства бумаги имело изобретение во второй половине XVII века размалывающего аппарата - ролла. В конце XVIII века роллы уже позволяли изготавливать большое количество бумажной массы, но ручной отлив (вычерпывание) бумаги задержал рост производства. В 1806 году запатентовали бумагоделательную машину. К середине XIX века бумагоделательная машина превратилась в сложный агрегат, работающий непрерывно и в значительной мере автоматически. В ХХ веке производство бумаги становится крупной высокомеханизированной отраслью промышленности с непрерывно-поточной технологической схемой, мощными теплоэлектрическими станциями и сложными химическими цехами по производству волокнистых полуфабрикатов.

Производство бумаги складывается из следующих процессов: - приготовление бумажной массы (размол и смешение компонентов, проклейка, наполнение и окраска бумажной массы); выработка бумажной массы на бумагоделательной машине (разбавление водой и очистка массы от загрязнений, отлив, прессование и сушка, а также первичная отделка); окончательная отделка (каландирование, резка); сортировка и упаковка.

Магнитофон

В начале XX века продолжает совершенствоваться техника звукозаписи - появляется магнитофон. В 1900 году публике был впервые представлен магнитофон, в котором звук записывался путем намагничивания участков проволоки. Час записи в начале XX века требовал 7 километров проволоки весом около 2 центнеров.

Перфокарты

 С середины XX века появляются перфокарты. Первые вычислительные машины в 20-50-х годах прошлого века все еще имели много общего со старинными шкатулками. Носители информации в те времена не знали понятий «удобство» и «высокая плотность записи». Данные загружались при помощи перфокарт - картонных карточек с проделанными в них отверстиями. Информация записывалась и считывалась согласно определенным схемам.

Жесткий диск

Следующим на арену вышел жесткий диск. Случилось это в 1956 году, когда IBM начала продажи первой дисковой системы хранения данных - 305 RAMAC. Чудо инженерной мысли состояло из 50 дисков диаметром 60 см и весило около тонны. Объем жесткого диска по тем временам был просто феноменальным - целых 5 МБ. Главное преимущество новинки заключалось в высокой скорости работы: в системе RAMAC головка чтения или записи свободно «гуляла» по поверхности диска, так что данные записывались и извлекались заметно быстрее, чем в случае с магнитными барабанами.

Компакт - диск

В середине 70-ых целый ряд крупных компаний приступил к разработке носителей информации принципиального нового типа - оптических накопителей. Выдающихся успехов на этом поприще добились компании Philips и Sony. Результатом их интенсивной работы стало появления стандарта CD (Compact Disk), который был впервые продемонстрирован в 1980 году. В продажу компакт-диски и соответствующие проигрыватели поступили в 1982 году. Благодаря феноменально низкой себе стоимости носителей формат CD сразу обрел популярность, однако в то время компакт-диски использовались только для хранения звуковой информации (до 74 минут аудио). Чтобы приспособить свое изобретение для работы с произвольными данными, компании Philips и Sony в 1984 году создали стандарт CD-ROM (Compact Disc Read Only Memory). В результате один компакт-диск обрел возможность хранить до 650 МБ информации - огромная цифра на тот момент. Со временем емкость носителей возросла до 700 МБ (или 80 минут аудио). В 1988 году компания TajyoYuden анонсировала формат записываемых дисков CD-R (Compact Disc Recordable).

В 1997 году появился формат CD-RW, позволяющий многократную перезапись данных на диске. В 1996 году на смену компакт-дискам пришел формат DVD (Digital Versatile Disc). По сути, это все тот же компакт-диск, но с увеличенной плотностью записи. Эффект был достигнут путем уменьшения размеров впадин и изменения типа лазера. Кроме того, у DVD может быть два рабочих слоя на одном диске. Объем однослойного диска составляет 4,7 ГБ, двухслойного - 8,5 ГБ. Разумеется, для работы с DVD-дисками были выпущены специальные приводы.

В 1997 году формат DVD пополнился дисками типа DVD-R и DVD-RW. Цена лицензии на эту технологию была очень высока, поэтому ряд компаний объединились в так называемый «DVD+RW Alliance» и в 2002 году выпустили диски стандартов DVD+R и DVD+RW. Многие старые DVD-приводы отказывались работать с дисками нового типа, но «самозванцам» все же удалось завоевать популярность. Сегодня DVD-R(W) и DVD+R(W) мирно сосуществуют, а современные приводы поддерживают оба формата

Флэш-память

 Первый вариант флэш-памяти был разработан в 1984 году компанией Toshiba. Четырьмя годами позже подобное решение информационного носителя было представлено и компанией Intel. Накопители на основе флеш-памяти называют твердотельными, т.к. они не имеют движущихся частей. Это повысило надежность флеш-памяти по сравнению с другими носителями.

Стандартные рабочие перегрузки равняются 15g, а кратковременные могут достигать 2000 g, т.е. теоретически карта должна превосходно работать при максимально возможных космических перегрузках и выдержать падения с трехметровой высоты. Причем в таких условиях гарантируется функционирование карты до 100 лет.

Стирание на этих картах происходит участками, поэтому нельзя изменить один бит или байт без перезаписи всего участка. Данные можно обнулять или в определенном минимальном размере, например, 256 или 512 байт, или полностью. Первыми флеш-накопителями были карты ATA Flash. Они изготавливались в виде PC Card со встроенным АТА контроллером. Потом начали выходить все новые и новые стандарты флеш-карт. Такие, как CompactFlashTypeI (CF I) и CompactFlashTypeII (CF II) - выпущены в 1994 году компанией SanDisk, представляют собой модификацию PC Card.

В 1995 году Smart Media Card (SMC) без встроенного контроллера разработаны компанией Toshiba [13, c.135].

год - Infineon Technologies (подразделение Siemens) создает Multi Media Card (MMC), они еще меньше, чем рассмотренные выше и весят они всего 1,5 г, поэтому и предназначены для портативных устройств. Позже компания Panasonic (Matsushita Electronic) вместе с SanDisk и Toshiba разработали стандарт Secure Digital (SD), которые снабжены средствами защиты от незаконного копирования [13, c.134].flash

В 2001 году появляется USB-flash (рис.14), эта карта состоит из защитного колпачка и собственно накопителя с USB-разъемом (внутри него размещаются одна или две микросхемы флеш-памяти и USB-контроллер) снабжены средствами защиты от незаконного копирования. Технологии не стоят на месте. В сфере оптических накопителей большие перспективы ожидают диски AO-DVD (Articulated Optica lDigital Versatile Disc), работа над которыми кипит в недрах компании Iomega. В основе разработки лежит идея использования наноструктур - участков диска с размерами меньшими, чем длина волны лазерного излучения. При этом сами участки могут располагаться под разными углами наклона. В итоге считывание информации происходит путем анализа характера распределения отраженного луча. В теории объем диска AO-DVD может превысить отметку в 800 ГБ [13, c.136].

Достаточно давно ведутся разработки в сфере голографической памяти. Наибольших успехов здесь достигла компания Optware. Она уже успела представить публике прототипы дисков формата HVD (Holographic Versatile Disc). Вполне возможно, что через несколько лет именно они придут на смену Blu-ray и HD DVD. Голографический диск состоит из нескольких отражающих слоев разного типа, а для их чтения используются сразу два лазера. Не вдаваясь в технические подробности, отметим, что теоретический объем HVD может достигать 3,9 ТБ.

Совсем скоро на смену флэш-накопителям придет память типа PRAM. Она не сулит невероятных объемов хранимой информации, а вместо этого предложит возросшее быстродействие. Другая перспективная технология, FeRAM (Ferroelectric Random Access Memory), пока что находится в стадии начальной разработки. В ее основе лежит использование ферромагнитных конденсаторов в качестве ячеек памяти и молекул воды для изоляции этих ячеек. Плотность записи у такого накопителя можно будет довести до нескольких тысяч терабайт на квадратный сантиметр.

Какие-то технологии не получат распространения и будут преданы забвению. Однако одно ясно точно: вместимость и скоростные показатели носителей информации растут быстрее день ото дня, и спада в их развитии в ближайшем будущем не намечается. Таким образом, способы документирования информации и формы передачи информации модернизируется, становятся все более удобными в использовании.

 

 


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.022 с.