В кристалле возникает трещина — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

В кристалле возникает трещина

2019-11-19 307
В кристалле возникает трещина 0.00 из 5.00 0 оценок
Заказать работу

 

Понятия «трещина», «треснуло» настолько будничны, что кажутся само собой разумеющимися. Треснуло — значит появилась трещина! Появилась трещина — значит треснуло! Между тем трещина заслуживает и, по праву, требует пристального внимания к себе. Ведь только что мы сформулировали сентенцию: «треснуло — значит появилась трещина». А с этим не могут мириться ни конструкторы, создающие машины, ни машины, работающие по замыслу конструкторов.

Итак, о том, как в кристалле поселяется трещина. Возможностей поселить в себе трещину у кристалла — множество! Я хочу рассказать о двух механизмах возникновения трещины в кристалле. О тех, которые отличаются наглядностью и оказываются действующими во многих реальных ситуациях.

Вначале одно общее соображение. Кристаллы под влиянием приложенных к ним усилий должны деформироваться. Если возникающие в кристалле напряжения достаточно велики, его деформация со временем будет нарастать. Хочется сказать: кристалл будет «течь». Так вот, если кристаллу ничто не мешает свободно «течь», он и будет «течь», сохраняя сплошность, а если свободно течь ему нечто мешает, в нем под влиянием нагрузки может возникнуть трещина! Соображение общее, и поэтому такие расплывчатые слова, как «ничто» и «нечто», не должны вызывать протеста. Говоря о течении кристалла, я имею в виду, что под влиянием приложенной нагрузки со временем его деформация нарастает, как, скажем, это могло бы происходить с нагретой до высокой температуры стеклянной нитью, к которой подвешен груз. Сейчас важны не конкретные детали, а общая мысль о том, что трещина может возникнуть, если свободная деформация кристалла, его течение почему-либо запрещено. Только эта мысль!

Теперь о двух конкретных механизмах возникновения трещин. Один из них был понят и описан английским ученым Стро и очень скоро вошел в плоть науки о реальном кристалле. Так бывает часто: ранее неизвестное со временем (и иной раз очень скоро!) кажется само собой разумеющимся. Говорят, что новая идея последовательно вызывает две реакции: вначале — «этого не может быть!», а затем — «иначе и быть не может!». Пожалуй, именно такая судьба оказалась и у идеи механизма появления трещины «по Стро». Вот посудите сами.

Помните очерк о движении дислокаций в плоскости скольжения и аналогию между дислокациями движущимися одна за другой, и цепочкой туристов, идущих по тропке? Если температура кристалла высока, дислокации, остановившиеся перед непреодолимым стопором, диффузионно обходят его. А если температура невысока и, следовательно, диффузионная подвижность атомов мала, вблизи стопора будет происходить иное: головная дислокация у стопора остановится, движущаяся за ней приблизится на расстояние, немного меньшее того, которое было между этими дислокациями, когда они скользили беспрепятственно. Головная дислокация испытает при этом давление. Со временем оно будет нарастать по мере приближения последующих дислокаций цепочки. Если у препятствия затормозится ряд следующих друг за другом п   дислокаций, головная дислокация будет испытывать на себе напряжение, n  -кратно превосходящее внешнее, то, которое вынуждает дислокации скользить. Оно может оказаться настолько большим, что превзойдет прочность кристалла, сдерживающего напор дислокаций, и вблизи кристалла зародится клиновидная трещина. Она появится вследствие объединения ближайших к стопору дислокаций. Следующие дислокации как-бы проваливаются в зародившуюся трещину, и она подрастает. Пока дислокация скользила свободно, кристалл «тек», а когда встретился стопор и движение дислокаций затормозилось, появилась трещина. Все как и следовало из «общего соображения».

 

О трещине, возникшей «по Стро», следует кое-что рассказать. Во-первых, ее ширина будет тем больше, чем большее число дислокаций, объединившись, приняло участие в ее формировании. Если это число обозначить п  , то ширина трещины будет равна пb,   где b    — вектор Бюргерса. О такой трещине иногда говорят так: дислокация с Еектором Бюргерса пb.   Во-вторых, оказывается, что направление трещины с направлением плоскости скольжения образует угол, близкий к 70°. Не стану приводить расчеты, из которых эта величина следует, а лучше предложу читателю убедиться в правильности утверждения, проделав опыт с моделью кристалла в виде листа белой бумаги. Впервые мне его продемонстрировал профессор Е. Д. Щукин и подарил для этой книги две фотографии, иллюстрирующие последовательные этапы опыта, который он производил, так сказать, собственноручно.

Опыт прост. На листе белой бумаги нужно карандашом провести прямую линию — символ полосы скольжения. Затем на некотором ограниченном участке этой линии бритвой сделать в бумаге разрез. Именно вдоль него можно будет осуществить сдвиг, символизирующий результат скольжения дислокаций. Концы разреза — символы стопоров, далее которых сдвиг не смог и не сможет распространяться. А теперь лист следует положить на гладкий стол, прижать его к столу двумя руками, расположенными с двух сторон от карандашной линии, и, медленно сдвигая руки в противоположных направлениях, спровоцировать сдвиг. При этом бумага, разумеется, прорвется, но не вдоль карандашной линии, а в направлении, образующем с карандашной линией угол, близкий к 70°!

 

Посоветовав читателю сделать этот модельный опыт, я, разумеется, ничего ему не пояснил. Быть может, лишь помог возникновению интуитивного восприятия правильности одного из следствий теории Стро. А это, пожалуй, не так уж мало. Я тешу себя мыслью, что от модельного опыта, а заодно и от автора популярного изложения большего можно и не требовать.

 

Механизм «по Стро» — не просто правдоподобный вымысел теоретика. Этот механизм реально действует, особенно в тех случаях, когда деформируется кристаллическое тело, пересеченное множеством границ раздела между элементами его структуры. Граница обычно играет роль стопора, и вблизи нее возникает трещина.

Все рассказанное о механизме возникновения трещины «по Стро» дает основание для важного замечания. Почему, собственно, кристалл «согласился» поселить в себе трещину? А потому, что, образовав ее, дислокации, скопившиеся перед стопором, освободились от действующих на них сил. Вообще говоря, есть, например, уже обсуждавшаяся нами возможность диффузионно обойти препятствие и переместиться в другую плоскость скольжения над или под препятствием, как бы обойти его, а затем скользить в этой другой плоскости, где стопора нет. Напомним еще раз, что при низкой температуре этот процесс не может происходить! Это одна из причин того, что при низкой температуре кристаллы хрупки, а при высокой — пластичны.

 

На этом, пожалуй, можно окончить рассказ о механизме появления трещины «по Стро» и перейти к рассказу о механизме «по Коттреллу». Коттрелл — английский физик-теоретик.

Механизм «по Коттреллу» от механизма «по Стро» отличается лишь образом стопора, который тормозит свободное скольжение дислокаций. В механизме Коттрелла в роли стопора, тормозящего движение цепочки дислокаций вдоль данного направления скольжения, оказываются такие же дислокации, которые, однако, движутся вдоль другого направления, пересекающегося с данным. Две дислокации, которые двигались вдоль пересекающихся направлений и столкнулись, взаимодействуют. В результате этого взаимодействия образуется новая дислокация. Она расположена так, что не может двигаться ни в одном из пересекающихся направлений скольжения и поэтому оказывается оседлой, покоящейся. О ней говорят: «сидячая дислокация». Каждая пара встретившихся дислокаций образует одну «сидячую». Все «сидячие» дислокации возникают близко друг от друга в области пересечения плоскостей скольжения. В конце концов они сливаются и образуют трещину.

Механизм «по Коттреллу» отчетливо наблюдается во многих кристаллических телах. В качестве примера его действия приведена фотография структуры кристалла NаС1, который всесторонне сжимали с целью залечить имеющуюся в нем пору. Объем поры действительно уменьшился, но вокруг нее образовались трещины «по Коттреллу».

 

 

ГДЕ ТОНКО — ТАМ НЕ РВЕТСЯ

 

Инженер американского Авиационного исследовательского центра А. А. Гриффитс в 1920 г. указал на пример, свидетельствующий о том, что народная мудрость «где тонко, там и рвется» состоятельна не всегда. Его интересовала проблема реальной прочности различных материалов, применяемых в авиастроении, — сталей, чугуна, алюминиевых сплавов. Он, однако, вопреки прямолинейному здравому смыслу, ставил свои опыты на на этих материалах, а на модельном материале — обычном стекле, разумно рассудив, что закономерности разрушения у различных твердых тел могут оказаться общими, а экспериментировать со стеклом проще.

Среди множества прочих наблюдений Гриффитс сделал и такое: прочность на разрыв цилиндрических стеклянных нитей увеличивается с уменьшением их диаметра d  : нить, диаметр которой 2•10 2см, имеет прочность около σ = 2• 109 дин /см2, а у нити, имеющей диаметр ≈ 3. 10-4 см, прочность возрастает до σ = 6. 1010 дин/см2. Нарастание прочности с уменьшением диаметра происходит монотонно. Экспериментально определив прочность стеклянных нитей при различных значениях Гриффитс сумел оценить предельную прочность тончайших нитей. Она оказалась около 1,1 • 1011 дин/см2. Обратим внимание на эту величину, запомним ее, далее она нам встретится.

Итак, рвется там, где не тонко, а там, где тонко, — не рвется. Почему? Есть в этом явлении что-то, что выводит его за пределы привычных представлений, так как рваться все же должно там, где тонко!

Читатель не может не почувствовать, что мы в преддверии проблемы большой значимости, что противоречие с народной мудростью должно таить в себе не пустяк, а нечто принципиально важное. Быть может, вскрыв и поняв это важное, мы осмыслим явление и восстановим торжество мудрости. Так должно быть!

Прежде чем мы последуем за логикой идей и опытов Гриффитса, необходимо подчеркнуть, что всякий раз, говоря о разрушении, мы будем иметь в виду хрупкое разрушение, т. е. такое, после которого из частей разрушенного тела (осколков!) можно его склеить, восстановив форму. «Хрупкое» разрушение — это, в отличие от «вязкого», разрушение, которое сопровождается изменением формы образца. Например, под влиянием растягивающих усилий в вязком теле образуется утончение, так называемая «шейка».

А вот теперь можно следовать за Гриффитсом. Его основная идея состояла в том, что разрушение твердого тела есть следствие поглощения им некоторого количества энергии. В великолепной популярной книге «Почему мы не проваливаемся под пол?» Джон Гордон пытается восстановить психологическую канву, на фоне которой Гриффитс создал свою классическую теорию разрушения хрупких тел. Гордон, шутя (а быть может, всерьез), допускает, что энергетический подход к проблеме разрушения Гриффитсу был подсказан воспоминаниями о тех мальчишеских днях, когда он и его друзья успешно разбивали стекла в окнах, пользуясь рогаткой и камешками. Энергия мышц передавалась растянутой резине, энергия резины — камню, энергия камня — стеклу, а хрупкое стекло, не выдерживая сгустка энергии, разрушалось. Если дело обстояло именно так, то можно не сомневаться, что своей теорией Гриффитс полностью искупил вред, который нанес окнам и он, и его ближайшие друзья, и все прочие мальчишки мира — любители рогаточного спорта.

Гриффитс предположил, что в той области нагруженного кристалла, где должно произойти разрушение, сконцентрирована избыточная энергия, величина которой зависит от приложенной к кристаллу нагрузки. При хрупком разрушении эта энергия превращается в энергию образовавшейся поверхности. На языке эксперимента с рогаткой это означает, что часть энергии летящего камня превратилась в энергию поверхностей всех образовавшихся осколков оконного стекла.

Приравняв энергию упругих напряжений, создаваемых в кристалле внешним воздействием, и энергию поверхностей, образующихся при хрупком разрушении, Гриффитс оценил ту прочность, которой должен был бы обладать кристалл. Воспроизведем его расчет, разумеется, в упрощенной форме. Вычислим вначале энергию, сосредоточенную в кубике твердого тела с размером ребра l  , который, под действием силы F   в направлении ее действия, изменил свой размер на величину Δ l  . Сопротивление кристалла деформированию увеличивается с ростом деформации, поэтому сочтем, что среднее значение силы, действующей на кристалл, приблизительно равно F/2. Вспомнив, что работа (или энергия) равна произведению силы на путь, энергию, запасенную в кристалле, определим соотношением

 

Приравняв упругую энергию поверхностной, Гриффитс нашел формулу, определяющую напряжение σ*, при котором кристалл должен разрушиться (т. е. его теоретическую прочность):

 

Итак, результат, к которому мы пришли, оказался следующим: ту прочность, которой, согласно расчету, должно обладать вещество, имеют лишь очень тонкие нити из этого вещества, а толстые нити имеют прочность, в 50 — 100 раз меньшую. Такое кричащее несоответствие между теоретической и реальной прочностью твердого тела не может быть обусловлено ошибкой расчета или эксперимента: слишком велико несоответствие, и слишком прозрачны и просты и расчет, и эксперимент. Здесь необходима оговорка. Расчет внушает доверие лишь в случае, если реальная ситуация соответствует той идеализированной, которая в расчете предполагается: твердое тело свободно от каких-либо дефектов, и все связи между атомами, которым надлежит быть разорванными, рвутся одновременно. А вот это, рассуждал Гриффитс, очевидно и не имеет места. Видимо, в реальном твердом теле — в его объеме и на поверхности — имеются микроскопические трещинки. Возможно, именно они и ответственны и за обнаруженное несоответствие теории и эксперимента, и за зависимость прочности нити от ее диаметра. Гриффитс был вынужден придумать дефект и поселить его в твердом теле для того, чтобы помирить теорию и эксперимент. В этом одна из основных забот теоретика — пытаться мирить теорию и эксперимент. Тем более, если теоретик и экспериментатор — одно лицо.

Читатель удивлен, его явно смущает словосочетание «придумать дефект», он, видимо, считает, что ничего придумывать не следует, что поступать надо совсем наоборот — «не поселять» в твердом теле придуманное, а, внимательно изучив структуру твердого тела, обнаружить дефект, наличие которого так резко понижает его прочность. Конечно, хорошо бы поступать так, как рекомендует читатель. Однако в его разумной рекомендации имеется одна логическая брешь. Если дефект будет непосредственно обнаружен, то, следовательно, в кристалле он присутствует. Если же он не будет обнаружен — это не значит, что его в кристалле нет. Это просто значит, что он не был обнаружен, и не более того! Именно такая трудность и встретилась Гриффитсу, не видевшему нужных ему трещин. В этом случае фантазия ученого должна домыслить необнаруженное в надежде на то, что со временем, когда экспериментальные методы станут более совершенными, можно будет убедиться в разумности домысла. Здесь в игру вступает такая тонкая материя, как интуиция ученого, его способность проникать в существо явлений природы, его фантазия, питающаяся знаниями, аналогиями, воспоминаниями, смелостью и независимостью суждений. Гриффитс явно был одарен этими ценностями, потому что, не видя ультрамикроскопических трещин, он их домыслил, а уже затем они были обнаружены и косвенно, и непосредственно.

Предложенный Гриффитсом энергетический подход к описанию разрушения хрупкого твердого тела можно использовать для определения размера той трещинки l *, которая окажется очагом разрушения, если к телу приложено определенное напряжение σ0.

 

 

Если трещина имела размер l * или достигла этого размера, ее дальнейшее подрастание будет выгодным, так как при l    > l * упругая энергия с ростом l   уменьшается быстрее, чем возрастает поверхностная.

Из приведенной оценки l *  ~ 1 /σ20 следует, что с ростом приложенного напряжения размер опасной трещины быстро уменьшается. Та трещина, которая при данном напряжении могла существовать в кристалле, не обнаруживая себя, при немного большем напряжении перейдет в разряд развивающихся трещин, которые себя обнаруживают очень впечатляющим образом: из-за них кристалл рушится. Из нашей оценки l * следует, что в кристаллах, модуль упругости которых Е    ≈ 1012 дин/см2, при напряжении σ0 ≈ 109 дин/см2 все те трещины, размер которых l   < 10-3 см, не должны развиваться, опасны лишь те трещины, размер которых превосходит 10-3 см. А вот при напряжении σ0 ≈ 1010 дин/см2 опасными окажутся трещинки, размер которых превосходит 10 -5 см.

Формулу, которая определяет величину l *, стоит использовать еще и для других оценок, прочтя ее для этого как бы в обратном направлении. Из этой формулы следует оценка напряжения, достаточного для того, чтобы тело, содержащее трещину с размером l *, разрушилось:

 

Если бы тело было абсолютно свободно от каких-либо трещин, оно обладало бы «теоретической прочностью» σ*, величинакоторой, как известно, близка к модулю упругости. На этом основании можно получить формулу

 

и с ее помощью оценить, во сколько раз трещинка данного размера понизит «теоретическую прочность» σ*, доведя ее до уровня некоторой истинной «технической прочности». Вот пример: при α ≈ 103 эрг/см2, Е    ≈ 1012 эрг/см3 и l    ≈10-3см оказывается σ/σ* ≈ 10-3. Повторю этот впечатляющий результат обычными словами: трещинка размером десять микрометров понижает прочность тела в 1000 раз! А трещинка в одну десятую микрометра — в 100 раз! Здесь читатель не может не задуматься над тем, как многого могут добиться технолог-металлург и технолог-машиностроитель, если они сумеют обеспечить производство изделий, свободных от трещин.

У Гриффитса, по меньшей мере, две фундаментальные заслуги перед той главой физики твердого тела, которая посвящена реальному кристаллу. Первая состоит в том, что он описал хрупкое разрушение твердого тела как процесс превращения упругой энергии, сосредоточенной в объеме тела, в поверхностную энергию его частей, образовавшихся при разрушении. Вторая, не менее важная, состоит в том, что Гриффитс первый рискнул придумать и «поселить» в твердом теле дефект — отклонение от идеальной структуры — для того, чтобы объяснить механические свойства реального тела. За Гриффитсом это делали многие и во многих случаях.

В начале очерка была высказана надежда, что мудрость «где тонко, там и рвется» восторжествует.Она действительно торжествует: рвется у устья трещины, т. е. там, где напряжения оказываются максимальными, а максимальными они оказываются потому, что напряжен лишь узкий, в угодной нам терминологии — тонкий, участок. Именно там и рвется! Подробнее об этом — в следующем очерке.

 

 

ЭФФЕКТ ИОФФЕ

 

Об эффекте, открытом и исследованном одним из патриархов советской физики академиком Абрамом Федоровичем Иоффе, я всегда с удовольствием рассказываю и во время университетских лекций, и просто в беседах с молодыми людьми, если хочу обратить их в свою веру — представить науку о кристаллах в красочном, привлекательном виде.

История открытия и самоутверждения эффекта Иоффе содержит все то, чем богата логика живой науки и маняща деятельность ученого. В этой истории и рождение проблемы, когда обнаруживается кричащее противоречие между идеями и фактами, и эксперимент — красивый и настолько простой, что у каждого возникает иллюзия сопричастности к замыслу эксперимента, уверенность, что и он придумал бы этот эксперимент, если бы ранее его не придумал и не осуществил тот, с чьим именем эксперимент вошел в науку. В истории эффекта Иоффе есть место деятельности и добросовестно заблуждающихся научных оппонентов, и активных газетных репортеров, неуемно и без достаточных оснований фантазирующих на тему «эффект и будущее» и высшая награда ученому, когда его идеи со страниц академических журналов перекочевывают на страницы учебников и в графы карточек цеховых технологических процессов.

Внешне эффект выглядит так. Оказывается, что, если кристалл каменной соли (толстый или тонкий — это безразлично) смочить водой, его прочность на разрыв становится во много раз больше прочности сухого кристалла. Казалось бы, прочность — объемное свойство кристалла и ему нет дела до всего того, что происходит на поверхности кристалла, а на поверку оказывается, что существует «эффект Иоффе»: соседство с водой резко упрочняет каменную соль.

Начало истории эффекта Иоффе мы будем датировать 1915 г., когда выдающимся немецким физиком-теоретиком Максом Борном была опубликована теория ионных кристаллов. Собственно, в этой теории впервые и было введено представление о кристаллах, состоящих из ионов, которые связаны электрическим взаимодействием. Сказанное в последней фразе для нас звучит азбучной истиной, а тогда, в 1915 г., всего через 3 года после того, как с помощью рентгеновских лучей впервые убедились в строгой периодичности чередования атомов в кристалле, мысль о структуре, состоящей из ионов, была откровением.

Теория Борна, математически стройная и внутренне непротиворечивая, подтверждалась многими экспериментами. Сопоставляя ее следствия с экспериментально установленными фактами, Борн объяснил оптические, электрические и многие другие свойства ионных структур. В противоречии с его теорией оказались лишь данные о прочности кристаллов. Известно было, что, например, кристалл каменной соли разрушается, если к нему приложить напряжение σ ≈ 4,5• 107 дин/см2, а точный и последовательный расчет теоретика предсказывал существенно иную величину: σ ≈ 2• 1010 дин/см2.

Сохранив идею, упростим расчет Борна и попытаемся примитивно оценить величину прочности кристалла. Борн ее вычислил строго.

Мы знаем, что прочность кристалла есть отношение силы, которую нужно приложить, чтобы его разорвать, к площади поверхности, по которой разрыв произошел: σ = F/S  

 

Простота и очевидность сделанной оценки не должны в глазах читателя умалить проницательность теоретика. Нам, полвека спустя, легко и просто быть умеющими и понимающими, за нами величие Борна, который в 1915 г., не имея предшественников, мыслил независимо и революционно. Он был великим мастером. Здесь я хочу обратить внимание читателя на то, что в приведенном расчете, относящемся к разрыву кристалла, как и в расчете Френкеля, относившемся к сдвигу, делается все то же «классическое» предположение, что все связи рвутся одновременно.

Осмысливая противоречия между расчетом Борна и экспериментальными данными, Иоффе должен был обсуждать две возможности: либо теоретик ошибся, либо эксперименты неточны! Второе предположение следует отбросить, не колеблясь, потому что, даже если бы произошло невероятное и экспериментаторы ошиблись в 500 раз, их поправила бы многовековая практика обращения человека с кристаллами NаС1. Ведь если бы действительно их прочность была в согласии с теорией Борна, то не так просто было бы добыть в штольне соляную глыбу, орудуя киркой, и непростой была бы задача истолочь эту глыбу в порошок. В 500 раз экспериментаторы не могли ошибиться! И теоретик вряд ли ошибался так сильно: и мысли его логичны, и многие иные факты, следуя этим же мыслям, он объяснил очень успешно.

Правду следовало искать где-то в другом месте. Именно это и сделал Иоффе. Он рассуждал так: Борн, конечно же не ошибается, но рассчитывает он идеальную ситуацию когда одновременно рвутся все п   связей. А если они рвутся не одновременно? Тогда, очевидно, разрушение будет происходить не мгновенно, так как связи рвутся последовательно, и при напряжении, значительно меньшем того, которое следует из теории.

Иоффе предположил, что на поверхности кристалла имеются микроскопические трещины. При нагрузках, меньших соответствующей «теоретической» прочности в устье трещины, в маленьком объеме кристалла могут возникнуть напряжения, при которых связи начнут рваться. А это значит, что трещина будет распространяться в глубь образца, пронижет его и расчленит на две части. Кристалл разрушится не потому, что в плоскости разрыва одновременно разрушились все связи, а потому, что последовательно разрушающиеся связи дали возможность трещине вырасти и расчленить кристалл.

 

В то время, когда Иоффе осмысливал свои опыты, идея «трещины» носилась в воздухе. И не случайно почти одновременно была использована и Гриффитсом, и Иоффе.

То, о чем думал Иоффе, представляя механизм разрушения, можно отчетливо проиллюстрировать модельным опытом. Он прост, и его результаты не оставляют сомнений. На предметном столике микроскопа растягивается тонкая пластинка плексигласа, на боковом торце которой сделан острый и неглубокий надрез. Пластинка моделирует кристалл, надрез — трещину на его поверхности. В поляризованном свете можно отличить напряженные участки в плексигласе: чем больше напряжение, тем соответствующий участок темнее. Так вот, на последовательности кадров отснятого нами кинофильма видно, что в устье надреза напряжения максимальны и что пластинка разрушается вследствие движения напряженного устья надреза сквозь нее. Происходит это при напряжениях, значительно меньших тех, которые необходимы для разрушения пластинки без надреза.

 

В упрощенном варианте подобный модельный опыт можно сделать не прибегая ни к микроскопу, ни к поляризованному свету, ни к кинокамере: порвать полоску бумаги, растягивая ее, намного легче, если предварительно сделать на ней маленький надрыв.

 

Итак, гипотеза есть, нужен опыт, экзаменующий ее. Идею опыта подсказывает прямолинейная логика: если действительно поверхностные трещины — истинная причина почти пятисоткратного понижения прочности, то, растворив в воде тонкий слой кристалла, в котором есть трещины, мы вправе ожидать, что прочность кристалла возрастет в пятьсот раз. Логика это право дает, а скепсис возражает логике: неужели вода способна обусловить такой эффект?

Иоффе поставил следующий опыт. Он растягивал монокристальный образец каменной соли в условиях, когда часть образца была в воздухе, а часть омывалась теплой водой, которая растворяла и утоняла кристалл. Результат опыта оказался в согласии с предсказаниями логики: образец разрушился в сухой части, обнаружив прочность ≈ 45• 10е дин/см2. Мокрая, более тонкая часть образца выдерживала напряжения до величины 15• 109 дин/см2, которая не так уж далека от «теоретической прочности» 20 • 109 дин/см2.

Ситуация гриффитсовская: где тонко, там не рвется! Как правило, красивым нам кажется такой опыт, который побеждает наш скепсис. В этом смысле опыт Иоффе, безусловно, очень красив!

Опыт (он был осуществлен в 1924 г.) с таким впечатляющим результатом, естественно, привлек к себе внимание и специалистов, и «околонаучных кругов». Газеты и научно-популярные журналы наперебой рассказывали своим читателям о фантастических последствиях возможного увеличения прочности материалов: мосты из проволок, сверхлегкие самолеты, автомобили, пароходы. В книге «Моя жизнь и работа» А. Ф. Иоффе возмущается этой рекламой: «...между наблюдением исключительной прочности кристалла каменной соли и получением такой же прочности технических материалов — громадный путь».

Журналисты ликовали по поводу эффекта, а в научных журналах появились статьи и на научных конференциях — выступления, которые, не ставя под сомнение результат опытов по разрыву мокрых кристаллов, опровергали предлагавшееся Иоффе толкование причины такого влияния воды на прочность каменной соли. Австрийский кристаллофизик Смекаль, известный своими исследованиями структуры кристаллов, на конференции в Лондоне утверждал, что в опытах Иоффе прочность соли меняется в связи с тем, что вода частично растворяется в ней. С этим утверждением можно было спорить, прибегая не к общим соображениям, а лишь к результатам точно поставленных опытов.

Такие опыты и были поставлены в Ленинграде, в лаборатории Иоффе. Расскажу о двух из них. Один заключался в простом повторении опыта по разрыву образца, погруженного в воду. Была предусмотрена лишь одна деталь: часть поверхности, погруженной в воду, была от воды защищена полоской нерастворимого лака. В этом случае эффект исчезал, прочность кристалла не повышалась. Через незащищенную поверхность вода в кристалл могла поступать, согласно идее Смекаля, и упрочнять его, но то обстоятельство, что на небольшом участке поверхности сохранились поверхностные трещины, делало кристалл уязвимым, малые нагрузки его разрушали. Идея Смекаля явно оказывалась несостоятельной.

Второй опыт был неожиданным по замыслу. Монокристальный шарик каменной соли предварительно охлаждался в жидком воздухе, а затем перебрасывался в расплавленное олово или свинец. Внешние слои шарика быстро нагревались, расширялись и растягивали во всех направлениях внутреннюю, еще не прогревшуюся часть шарика. Теоретики подсчитали, что в центре шарика возникали напряжения до 7• 109 дин/см2, между тем шарик не разрывался. Дело в том, что напряжения возникали внутри шарика, а поверхностные трещины оставались недостаточно напряженными, не росли, и кристалл сохранял целостность.

У читателя, конечно же, возник вопрос: почему именно трещины на поверхности кристалла оказались определяющими его прочность? Неужели структура объема образца абсолютно бездефектна, свободна от «объемных» трещин, которые были бы равно безразличны и к наличию, и к отсутствию воды на поверхности образца? Действительно, могло бы оказаться, что роль поверхностных трещин не определяла бы прочность. Могло бы, а вот в случае соли не оказалось.

Быть может, это обстоятельство умаляет значимость и общность эффекта? Быть может, речь идет о случайной находке экспериментатора, имеющей ограниченный, частный интерес? Конечно же, нет! Речь идет о другом. Благодаря тому, что отыскались объекты, где поверхностные трещинки себя проявляют предельно отчетливо, физика обогатилась ясным пониманием возможного влияния поверхностных дефектов на механические свойства кристаллов. Важная проблема «кристалл и среда» немного прояснилась, кусочек истинной правды о законах природы оказался заключенным в «эффекте Иоффе».

Абрам Федорович Иоффе был счастливым ученым, он видел при жизни учебники физики с параграфом «Эффект Иоффе» и видел карточки тех цеховых технологических процессов, в которых достигается значительное упрочнение изделий вследствие удаления трещин с их поверхности.

 

 

ЭФФЕКТ РЕБИНДЕРА

 

Продолжим рассказ о живущих в кристалле трещинах. Первый обстоятельный доклад о своем открытии Петр Александрович Ребиндер сделал поздним летом 1928 г. на пароходе, спускавшемся вниз по Волге — от Нижнего Новгорода до Саратова. На пароходе плыли делегаты

VI Всероссийского съезда физиков и гости съезда. Среди гостей были крупнейшие физики того времени: Макс Борн, Петер Дебай, Чарлз Дарвин, Поль Дирак и многие другие. Для истории советской физики это был знаменательный съезд, потому что именно во время этого съезда были доложены и обсуждены три крупнейших достижения молодой советской физики: эффект комбинационного рассения света (о нем доложил Л. И. Мандельштам), первые результаты, полученные при исследовании цепных реакций (о них доложил Н. Н. Семенов), и эффект адсорбционного понижения прочности (о нем доложил П. А. Ребиндер).

Доклад П. А. Ребиндера вызвал скептическое к себе отношение. Докладчик утверждал, что механические свойства кристаллического тела могут быть существенно изменены, если на его поверхности расположить специально подобранные вещества. Докладчик рассказывал об опытах, подтверждающих его точку зрения. Все это выглядело более чем странно, потому что, какое бы вещество ни располагалось на поверхности, о его существовании осведомлены лишь «поверхностные» атомы кристалла, а их исчезающе мало. Относительная доля поверхностных атомов из числа образующих проволоку радиусом оказывается равной

χ = 2π RaR 2 = 2а/ R,  

где а   — межатомное расстояние. Если R =   10-1 см, а   = 3. 10-8 см,

то χ ≈ 10 -7, т. е. на поверхности такой проволоки расположена одна десятимиллионная доля всех атомов, из которых она состоит. Не могут же они определить собой прочность массивного образца, за нее ведь заведомо ответственны атомы, находящиеся в объеме! Вспомним: подобные соображения возникали и в связи с эффектом Иоффе.

Прошли годы, появились новые факты, догадки, теоретические оценки. Оказалось, что докладчик был прав. Обширный опыт конференций и семинаров свидетельствуют о том, что докладчики обычно бывают правы. Не всегда, но чаще всего. Они о предмете доклада думали больше и заинтересованнее, чем их слушатели-оппоненты.

Итак — эффект Ребиндера: кристалл, поверхность которого покрыта так называемым поверхностно-активным веществом, обнаруживает механические свойства, существенно отличающиеся от свойств такого же кристалла, поверхность которого чиста. Так, например, значительно пониженной может оказаться прочность на разрыв, кристалл может обнаружить повышенную хрупкость.

 

Очень впечатляет классический опыт, который П. А. Ребиндер любил демонстрировать во время лекций. Опыт простой. Вначале следует убедиться в том, что тонкая пластинка цинка под влиянием малых усилий легко изгибается, оказывается пластичной. Затем следует очистить участок поверхности кристалла и нанести на него каплю ртути. После этой процедуры изгиб кристалла сопровождается появлением трещины. В нее активно проникает ртуть, и трещина быстро развивается. Ртуть, находящаяся на поверхности пластичного цинка, сделала его хрупким. Я неоднократно видел эту лекционную демонстрацию в исполнении Петра Александровича. Демонстрируя, он всегда был радостно возбужден, и в его повадке было нечто от повадки школьника, удивляющего друзей эффектным фокусом.

Этому большому, убеленному сединами человеку была свойственна ребячливость. Когда в его руках оказывались части хрупко разрушившейся пластинки цинка, он победно оглядывал слушателей и говорил: «Никакой ловкости рук!»

Процессы, сопутствующие проявлению эффекта Ребиндера, в той форме, какая наблюдалась в описанном опыте, очень не просты. Они зависят от физических свойств и кристалла, и вещества, занесенного на его поверхность.

Попытаемся понять физику эффекта, имея в виду кристалл А  , на поверхности которого расположено некоторое поверхностно-активное вещество В.   Может оказаться (и это оказывается в огромном количестве комбинаций А   и В  ), что атомам сорта В   выгодно располо<


Поделиться с друзьями:

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.086 с.