Черная дыра сжимается и взрывается — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Черная дыра сжимается и взрывается

2019-08-07 159
Черная дыра сжимается и взрывается 0.00 из 5.00 0 оценок
Заказать работу

 

 

Затем разорвалась бомба. Стивен Хокинг в начале на конференции в Англии, а затем в краткой статье в журнале Nature объявил об ошеломляющем предсказании, противоречащем гипотезе Зельдовича, Старобинского, Пейджа и Унру. Расчеты Хокинга подтверждали, что вращающаяся черная дыра должна излучать и замедлять свое вращение. Однако они также предсказывали, что когда черная дыра останавливается, ее излучение не прекращается. Даже после остановки она продолжает испускать все возможные виды излучения (гравитационное, электромагнитное, нейтрино) и при излучении продолжает терять энергию. Если раньше дыра черпала вращательную энергию из пространственной воронки вне горизонта событий, то теперь она вынуждена черпать ее из самой себя!

Не менее удивительным оказался еще один результат расчетов Хокинга: спектр излучения (т. е. количество энергии, излучаемой на данной длине волны) был в точности подобен спектру теплового излучения горячего тела. Другими словами, черная дыра ведет себя точно так же, как если бы ее горизонт событий имел конечную температуру, пропорциональную силе поверхностной гравитации черной дыры. Это (если бы Хокинг оказался прав) неопровержимо доказывало бы, что законы механики черных дыр Бардина—Картера—Хокинга по сути дела являются замаскированными законами термодинамики, т. е., как заявлял Бекенштейн двумя годами ранее, черная дыра имеет энтропию, пропорциональную площади ее поверхности.

Расчеты Хокинга пошли еще дальше. После того как вращение черной дыры замедлится, ее энтропия и площадь горизонта событий станут пропорциональны ее массе в квадрате, а температура и поверхностная гравитация — массе, деленной на площадь. Следовательно, поскольку черная дыра продолжает излучать, преобразуя массу в истекающую энергию, ее масса уменьшается, так же как энтропия и площадь, а температура и поверхностная гравитация возрастают. Черная дыра сжимается и становится горячее. По сути дела, она испаряется.

Черная дыра, которая недавно образовалась в результате взрыва звезды (и поэтому имеет массу больше двух масс Солнца), имеет очень низкую температуру: менее 3 х 10-8  градуса выше абсолютного нуля (0,03 микрокельвина). Таким образом, испарение в начале очень медленное, такое медленное, что черной дыре потребуется больше 1067  лет (т. е. в 1057 раз больше возраста современной Вселенной), чтобы заметно сжаться. Однако по мере того как черная дыра сжимается и нагревается, она будет излучать все сильнее и ее испарение будет ускоряться. В конце концов, когда масса черной дыры уменьшится до некоторого значения (1000—100000000  тонн), а горизонт событий сожмется и станет в несколько раз меньше атомного ядра, звезда станет настолько горячей (1  триллион— 100 000  триллионов градусов), что она взорвется за доли секунды.

 

***

Многие специалисты в общей теории относительности и квантовой теории мирового уровня были совершенно уверены, что Хокинг ошибся. Его вывод нарушал все, что они знали о черных дырах. Возможно, он неправильно выстроил свою концепцию о частичном объединении общей теории относительности с квантовой механикой; или же он сделал это правильно, но ошибся в расчетах.

Следующие несколько лет ученые тщательно исследовали концепцию Хокинга и сопоставляли ее со своими, а также они проверяли расчеты Хокинга излучения от черных дыр. Постепенно, один за другим, они соглашались с Хокингом и принимали его концепцию. Новые законы, возникавшие из этой концепции, получили название законов квантовых полей в искривленном пространстве-времени. Эти законы рассматривали черную дыру как объект общей теории относительности в искривленном пространстве-времени, не обладающий квантовомеханическими свойствами. А гравитационные волны, электромагнитные волны и другие типы излучений рассматривались как квантовые поля,  другими словами, как волны, подверженные законам квантовой механики, и которые поэтому ведут себя и как волны, и как частицы (см. Врезку 4.1). [Полное слияние обшей теории относительности и квантовой теории, т. е. корректные законы квантовой гравитации, трактовали бы любой объект, включая искривленное пространство-время вокруг черной дыры, как квантовомеханический, т. е. подверженный принципу неопределенностей (Врезка 10.2), корпускулярноволновому дуализму (Врезка 4.1) и вакуумным флуктуациям (Врезка 12.4). Мы поговорим об этом полном слиянии и некоторых следствиях из него в следующей главе.]

Как же можно было достигнуть согласия в вопросе о фундаментальных законах квантовых полей в искривленном пространстве-времени, когда не было никаких экспериментов, которые могли бы помочь определиться? Как ученые могли признать правоту Хокинга, не имея никакого экспериментального подтверждения? Их уверенность происходила из требования согласованности. (Если бы соединение законов квантовых полей и законов искривленного пространства-времени было не вполне согласованным, тогда разные толкования законов могли бы привести к различным следствиям: иногда получалось бы, что черные дыры не могут излучать, а иногда, что они должны всегда излучать. Бедные физики, не зная во что верить, могли бы просто лишиться работы.)

Новые объединенные законы должны были согласовываться с законами искривленного пространства-времени ОТО в отсутствие квантовых

полей и с законами квантовых полей в отсутствие искривления пространства-времени. Такое объединение и требование идеального согласования подобно полностью разгаданному кроссворду и позволяет определить форму новых законов практически11 полностью. Если существует последовательное объединение законов (а оно должно быть, если стремление физиков познать Вселенную вообще имеет смысл), то они могут быть объединены только описанным способом и при общем согласии.

Требование согласования законов физики часто используется как инструмент при поиске новых законов. Однако это требование ранее не играло такой большой роли. Например, когда Эйнштейн создавал свои законы ОТО (глава 2), необходимость согласования не подсказала ему исходную предпосылку, а именно, что гравитация есть следствие искривления пространства-времени; этой предпосылке Эйнштейн обязан своей интуиции. Когда он осознал необходимость этой предпосылки, оказалось, что законы ОТО прекрасно согласуются с законами гравитации Ньютона, когда гравитация слаба, и с законами СТО, когда гравитация отсутствует вообще, т. е. форма новых законов определилась почти однозначно и стала ключом в открытии Эйнштейном уравнения поля.

***

В сентябре 1975 г. я приехал в Москву в пятый раз и привез бутылку «Белой лошади» для Зельдовича. К моему удивлению, я обнаружил, что несмотря на то, что все западные ученые уже согласились с Хокингом и поняли, что черные дыры могут испаряться, никто в Москве не верил расчетам и выводам Хокинга. Хотя результаты Хокинга были подтверждены новыми, совершенно различными методами и информация об этом была опубликована в 1974—75 гг., в СССР об этом мало кто знал. Почему? Потому что в это не верили Зельдович и Старобинский. Они продолжали утверждать, что в процессе излучения черная дыра должна замедлять свое вращение и, в конце концов, перестать излучать совсем. Поэтому она не может испариться полностью. Я пытался спорить с Зельдовичем и Старобинским, но бесполезно: они знали гораздо больше меня о квантовых полях в искривленном 11

Слово «практически» связано с рядом неопределенностей в операции, называемой «перенормировкой», с помощью которой вычисляется суммарная энергия, переносимая вакуумными флуктуациями. Эти неопределенности были описаны Робертом Уолдом (бывшим студентом Уилера); они не влияют на испарение черной дыры. По-видимому, полностью от них нельзя избавиться до создания полной квантовой теории гравитации.

пространстве-времени и хотя (как обычно) я был совершенно уверен, что правда на моей стороне, я не мог опровергнуть их доводов.

Я должен был вернуться в Америку во вторник 23 сентября. Вечером в понедельник, когда я упаковывал сумки, в моей комнате в гостинице «Университетская» зазвонил телефон. Это был Зельдович: «Приезжай ко мне, Кип! Я хочу поговорить об испарении черных дыр!» Времени у меня было в обрез, и на частной машине по незнакомому мне маршруту я поспешил к Зельдовичу. У меня возникло чувство, что мы заблудились, но когда мы повернули на Воробьевское шоссе, я успокоился. Сказав шоферу «спасибо», я вышел из машины напротив дома 2Б, быстрым шагом миновал калитку и, пройдя густо заросший деревьями двор, поднялся по ступенькам на второй этаж дома в квартиру Зельдовича.

Зельдович и Старобинский встретили меня на пороге с поднятыми вверх руками, но с ухмылками на лицах. «Мы сдаемся, Хокинг прав, а мы ошибались!» В течение часа они объясняли мне свою версию законов квантовых полей в искривленном пространстве-времени вокруг черной дыры. Вначале казалось, что их версия полностью отличается от версии Хокинга. На самом деле они были совершенно эквивалентны. Но в расчеты Зельдовича и Старобинского вкралась ошибка, и они сделали вывод, что черные дыры не могут испаряться. Исправив ошибку, они согласились с Хокингом.

***

В зависимости от того, каким способом будут сформулированы законы квантовых полей в искривленном пространстве-времени вокруг черной дыры, можно по-разному описать ее испарение. Однако во всех случаях источником излучения являются флуктуации вакуума. Проще всего описать излучение черной дыры следующим образом, пользуясь корпускулярной, а не волновой картиной.

Подобно «настоящим» волнам с положительной энергией флуктуации вакуума имеют корпускулярно-волновую природу, т. е. являются одновременно волнами и частицами (Врезка 4.1). Их волновую природу мы уже отмечали (Врезка 12.4): флуктуации происходят случайным и непредсказуемым образом, при этом положительная и отрицательная энергии моментально возникают то тут, то там, а средняя энергия равна нулю. Корпускулярную природу можно описать в рамках понятия виртуальных частиц, которые возникают парами и живут очень короткое время за счет энергии, заимствованной у соседних областей пространства, после чего аннигилируют и исчезают, отдавая вновь свою энергию смежным областям. В случае электромагнитных флуктуаций вакуума виртуальными частицами

 

являются виртуальные фотоны, в случае гравитационных флуктуаций вакуума — виртуальные гравитоны 12.

На рис. 12.2 показано, каким образом флуктуации вакуума заставляют испаряться черные дыры. В системе отсчета наблюдателя, падающего внутрь черной дыры, возле горизонта событий черной дыры появляется пара виртуальных фотонов (слева). Виртуальные фотоны могут легко отделиться друг от друга, пока они оба остаются в области с положительной энергией электромагнитного поля. Эта область может быть и крошечной, и очень большой, поскольку флуктуации вакуума возникают во всех диапазонах. Однако размеры области всегда будут соответствовать длине флуктуирующей электромагнитной волны, так что виртуальные фотоны могут удалиться друг от друга только на одну длину волны. Если длина волны примерно равна окружности черной дыры, то виртуальные фотоны могут легко отдалиться друг от друга на четверть этой длины окружности, как показано на рисунке. Приливные силы гравитации возле горизонта событий очень сильны; они очень

Читатель, вероятно, уже знаком с понятиями материи и антиматерии, в частности, с парой электрон—позитрон (частица—античастица). Точно так же, как электромагнитное поле отражает полевую природу фотона, существует «электронное поле», которое отражает полевую природу электрона и позитрона. В тех местах, где из-за вакуумных флуктуаций электронное поле моментально возрастает, может возникнуть пара виртуальный электрон— виртуальный позитрон; там, где из-за флуктуаций поле уменьшается, электрон и позитрон аннигилируют и исчезают. Античастицей фотона является сам фотон, поэтому виртуальные фотоны возникают и исчезают парами, как и гравитоны.

активно расталкивают виртуальные фотоны друг от друга, сообщая им большую энергию, как это представляется падающему на черную дыру наблюдателю, который находится на полпути между ними. Увеличения энергии фотонов к тому времени, как они будут находиться на расстоянии, равном четверти окружности горизонта событий, хватит для превращения фотонов в настоящие, долгоживущие фотоны (правая часть рис. 12.2). И у них еще остается достаточно энергии, чтобы отдать ее обратно смежным областям пространства с отрицательной энергией. Фотоны, ставшие теперь реальными, отделяются друг от друга. Один попадает внутрь горизонта событий и навсегда потерян для внешней Вселенной. Другой ускользает от черной дыры, унося с собой энергию (следовательно, и массу[101]), полученную за счет приливных сил гравитации. Черная дыра, у которой уменьшилась масса, немного сжимается.

Этот механизм излучения частиц совершенно не зависит от того, что частицы — фотоны и им соответствуют электромагнитные волны. Механизм одинаково хорошо будет работать для всех других видов частиц-волн (т. е. для всех других типов излучения: гравитационного, нейтрино и т. д.); иными словами, черная дыра испускает все виды излучения.

Перед тем как виртуальные частицы материализуются в реальные, они должны находиться на расстоянии меньшем, чем примерно длина соответствующей волны. Но для того чтобы получить от приливных сил гравитации черной дыры энергию, достаточную для материализации, они должны удалиться друг от друга примерно на четверть длины окружности черной дыры. Это означает, что длины волн частиц, излучаемых черной дырой, должны быть не менее четверти длины окружности черной дыры.

Черная дыра с массой в два раза больше массы Солнца имеет длину окружности 35 км, и излучаемые ею частицы, соответственно, имеют длину волны 9 км и больше. По сравнению со световыми или обычными радиоволнами это гигантские длины волн, но они не сильно отличаются от длин гравитационных волн, которые излучала бы черная дыра при столкновении с другой черной дырой.

***

В начале своей научной карьеры Хокинг старался быть предельно скрупулезным в своих исследованиях. Он никогда ничего не утверждал до тех пор, пока не получал неоспоримых доказательств. Однако к 1974 г. он изменил свою позицию. «Я бы предпочел быть правым, а не скрупулезным», — твердо заявил он мне. Большая скрупулезность требует больше времени. К 1974 г. Хокинг поставил перед собой цель добиться полного слияния ОТО и квантовой механики, а также понять происхождение Вселенной — цель, для достижения которой требовалось огромное количество времени и сосредоточенности. Возможно, он ощущал недостаток отведенного ему времени острее, чем другие люди. Причиной, естественно, была его болезнь. Поэтому Хокинг счел уже возможным пренебрегать излишней тщательностью, не уделяя слишком много внимания детальному объяснению всех аспектов своих открытий. Он должен был двигаться вперед с огромной скоростью.

Так случилось, что Хокинг, получив в 1974 г. твердое доказательство того, что черная дыра излучает так, как если бы она имела температуру, пропорциональную ее поверхностной гравитации, сразу перешел к утверждению, без соответствующего доказательства, что все  остальные подобия между законами механики черных дыр и законами термодинамики — более чем простое совпадение. По его мнению, законы черных дыр — это то же самое, что и законы термодинамики, но в замаскированном виде. Из этого утверждения и твердо доказанного соотношения между температурой и поверхностной гравитацией Хокинг вывел точную зависимость между энтропией черной дыры и площадью ее поверхности: энтропия в 0,10857... раза больше площади поверхности, деленной на постоянную Планка—Уилера[102]. Другими словами, невращающаяся черная дыра с массой десять солнечных масс имеет энтропию 4,6x1078. Это примерно то же самое, что говорил Бекенштейн.

Бекенштейн, конечно, был уверен в правоте Хокинга и очень радовался его выводам. К концу 1975 г. Зельдович, Старобинский, я и другие коллеги Хокинга склонны были согласиться с ним. Однако это согласие было не полным, пока мы не осознали всю глубину случайности, таящейся в черной дыре. Для описания «внутренностей» черной дыры существуют различные способы и при этом без изменений ее внешнего вида (массы, углового момента и заряда). Но что собой представляют эти «внутренности»? И как с физической точки зрения можно понять тепловое поведение черной дыры — тот факт, что дыра ведет себя совершенно так же, как обычное тело, имеющее некую температуру? И когда Хокинг начал заниматься исследованиями квантовой

 

гравитации и происхождения Вселенной, Поль Дэвис, Билл Унру, Роберт Уолд, Джеймс Йорк, я и многие другие коллеги Хокинга нацелились на решение этих вопросов. В течение следующих десяти лет мы постепенно пришли к новому пониманию, которое показано на рис. 12.3.

Рис. 12.3а изображает флуктуации атома у черной дыры так, как их видят наблюдатели, падающие внутрь через горизонт событий. Эти флуктуации состоят из пар виртуальных частиц. Время от времени благодаря приливным силам гравитации одна из таких пар частиц получает энергию, достаточную для превращения виртуальных частиц в реальные и для того, чтобы одна из этих частиц ускользнула от черной дыры. Эта точка зрения на вакуумные флуктуации и на испарение черных дыр рассматривалась на рис. 12.2.

Рис. 12.3б изображает другую точку зрения на вакуумные флуктуации черной дыры, со стороны наблюдателей, которые всегда находятся в покое над горизонтом событий. Для того чтобы их не поглотила

черная дыра, эти наблюдатели должны иметь достаточно большое ускорение по отношению к падающим наблюдателям, используя ракетные двигатели или просто повиснув на веревке. По этой причине точка зрения этих наблюдателей называется «ускоренной». Это также точка зрения «мембранного подхода» (глава 11).

Удивительно то, что с «ускоренной» точки зрения флуктуации вакуума состоят не из виртуальных частиц, всплывающих из небытия и уходящих в него же, но из реальных частиц, которые имеют положительную энергию и долгую жизнь (см. Врезку 12.5). Реальные частицы образуют горячую атмосферу вокруг черной дыры, очень похожую на атмосферу Солнца. С этими реальными частицами связаны реальные волны. На частицу в атмосфере, движущуюся вверх, действуют гравитационные силы и уменьшают энергию ее движения; соответственно, удаляющаяся волна подвергается гравитационному покраснению, и ее длина волны увеличивается (рис. 12.3б).

На рис. 12.3в изображено движение частиц в атмосфере черной дыры с «ускоренной» точки зрения. Кажется, что частицы излучаются горизонтом событий; большинство из них поднимаются на короткое расстояние над горизонтом событий и затем падают обратно под влиянием сильного притяжения черной дыры, но некоторым удается «ускользнуть из объятий» черной дыры. Эти ускользающие частицы и видят падающие наблюдатели как те, что появляются из виртуальных пар (рис. 12.3 а). Это испаряющиеся частицы Хокинга.

С «ускоренной» точки зрения, горизонт ведет себя как мембраноподобная поверхность с высокой температурой; описание «мембранной парадигмы» см. в главе 11. Подобно тому как горячая поверхность Солнца излучает частицы (в частности, фотоны, которые освещают нашу Землю), их излучает и горячая мембрана горизонта событий черной дыры. Излучаемые мембраной частицы формируют атмосферу черной дыры, а некоторые из них испаряются. Гравитационное красное смещение уменьшает энергию частиц по мере их удаления от мембраны. Поэтому хотя сама мембрана чрезвычайно горячая, испаряющееся излучение гораздо холоднее.

Врезка 12.5  

Излучение ускорения

В 1975 г. недавний студент Уилера, Уильям Унру, и независимо от него Пол Дэвис из Королевского колледжа в Лондоне сделали следующее открытие (используя законы квантовых полей в искривленном пространстве-времени): наблюдатели, движущиеся с ускорением возле горизонта событий черной дыры, будут видеть флуктуации вакуума

не в виде виртуальных пар частиц, а в виде атмосферы реальных частиц, атмосферы, которую Унру назвал “излучением ускорения”.

Это удивительное открытие показало, что понятие реальной частицы является относительным, а не абсолютным; т. е. оно зависит от системы координат. Наблюдатели в свободно падающих системах отсчета, которые ныряют под горизонт событий черной дыры, не видят вне горизонта реальных частиц; они видят только виртуальные частицы. Наблюдатели в ускоренных системах отсчета, которые благодаря своему ускорению всегда остаются выше горизонта событий, видят множество реальных частиц.

Как это возможно? Как может один наблюдатель утверждать, что горизонт событий окружен атмосферой из реальных частиц, а другой — что ее нет? Ответ заключается в том, что флуктуационные волны в вакууме из виртуальных частиц не ограничены областью вне горизонта событий; частично флуктуационная волна находится под горизонтом, а частично вне его.

• Свободно падающие наблюдатели, проходящие через горизонт, могут увидеть обе части волны вакуумных флуктуаций, как ту часть, которая находится над горизонтом, так и над ним, поэтому такие наблюдатели хорошо осведомлены (проводя измерения), что такие волны являются просто вакуумными флуктуациями и, соответственно, что ее части являются не реальными, а виртуальными частицами.

• Ускоренные наблюдатели, которые все время находятся над горизонтом, могут видеть только внешнюю часть вакуумной флуктуационной волны и не могут видеть ее внутреннюю часть и, соответственно, с помощью своих измерений не могут узнать, что такая волна является только флуктуационной с виртуальными частицами. Видя только часть флуктуационной волны, они принимают ее за «реальную» — реальную волну и реальные частицы и в результате своих измерений обнаруживают вокруг горизонта атмосферу из реальных частиц.

То что реальные частицы атмосферы ускоренного наблюдателя постоянно испаряются и улетают во внешнюю Вселенную (рис. 12.3в), является отражением того факта, что эта точка зрения так же верна, как и точка зрения свободно падающего наблюдателя. То, что свободно падающий наблюдатель видит как превращение виртуальной пары в реальную с помощью приливных сил с последующим испарением одной из реальных частиц, ускоренный наблюдатель видит просто испарение одной из частиц, которая всегда была реальной и всегда находилась в атмосфере черной дыры. Обе точки зрения правильны, они отражают одну и ту же физическую реальность, рассматриваемую в разных системах отсчета.

С «ускоренной» точки зрения становится понятно не только то, почему черная дыра такая горячая, но и то, почему черные дыры так трудно обнаружить. Рассмотрим следующий мысленный эксперимент, предложенный мной и моим постдоком Войчехом Зуреком.

12. Испарение черных дыр

Бросим в атмосферу черной дыры небольшое количество вещества. Это вещество обладает некоторой энергией (и эквивалентной ей массой), угловым моментом вращения и электрическим зарядом. Из атмосферы это вещество попадет, пролетев через горизонт событий, внутрь черной дыры. Как только вещество попадет внутрь дыры, оно становится недоступным для наблюдения извне. Природу такого вещества исследовать невозможно; нельзя сказать, состоит ли оно из материи или антиматерии, из фотонов или тяжелых атомов, из электронов или позитронов. Невозможно также выяснить, где именно попало вещество в дыру. Поскольку у черной дыры нет «волос», единственное, что можно узнать, исследуя ее извне, это массу частицы, угловой момент и заряд, с которыми она вошла в атмосферу.

Спросим себя, сколько существует различных способов введения в горячую атмосферу дыры этого вещества с определенным количеством массы, углового момента и заряда. Подобный вопрос мы уже задавали в главе 12, когда рассматривали распределение детских игрушек по плиткам детской комнаты (см. Врезку 12.3). Логарифм числа способов «внедрения» частицы должен быть равен увеличению энтропии в атмосфере, в соответствии со стандартными законами термодинамики. В результате достаточно простого расчета мы с Зуреком показали, что увеличение энтропии в точности равно 1/4 прироста площади поверхности горизонта событий, деленного на постоянную Планка-Уилера; это фактически и есть сам прирост площади поверхности горизонта событий, о чем говорил Хокинг еще в 1974 г. на основании математического подобия законов механики черных дыр и законов термодинамики.

В краткой форме вывод из этого мысленного эксперимента следующий: энтропия черной дыры равна числу способов ее возникновения. Это означает, что сформировать черную дыру с массой 10 масс Солнца и энтропией 4,6х1078 можно 104,6х1078 способами. Такая концепция энтропии была впервые предложена Бекенштейном в 1972 г., а в 1977 г. Хокингом и его бывшим студентом Гэри Гиббонсом дано ее весьма абстрактное доказательство.

Этот мысленный эксперимент показывает второй закон термодинамики в действии. Энергия, угловой момент и заряд, которые попали в атмосферу черной дыры, могут принимать любую форму. Это может быть воздух из комнаты (пример с которым мы рассматривали ранее в этой главе), упакованный в пакет и заброшенный туда. Если пакет забросить в атмосферу черной дыры, энтропия внешней Вселенной уменьшится на величину энтропии в пакете. Однако энтропия атмосферы черной дыры, а поэтому и самой дыры, увеличится больше, чем

на величину энтропии в пакете, так что полная энтропия черной дыры и внешней Вселенной не убывает. Второй закон термодинамики будет соблюден.

Аналогичным образом, когда черная дыра испаряет частицы, ее площадь поверхности и энтропия должны понижаться; но частицы случайным образом распределяются во внешней Вселенной, увеличивая ее энтропию больше, чем на величину потери энтропии черной дырой. Второй закон термодинамики будет соблюден и в этом случае.

***

Сколько времени уйдет на полное испарение и исчезновение черной дыры? Ответ зависит от ее массы. Чем больше черная дыра, тем ниже ее температура и тем слабее она излучает частицы и медленнее испаряется. В 1975 г. Дон Пейдж (он был тогда одновременно моим студентом и студентом Хокинга) рассчитал, что полное время жизни черной дыры равно 1,2х1067 лет, если ее масса в два раза больше массы Солнца. Время жизни пропорционально кубу массы черной дыры, поэтому дыра с массой 20 солнечных масс живет 1,2х1070 лет. Эти времена настолько велики по сравнению с современным возрастом Вселенной (1 х 1010 лет), что испарение черных дыр в астрофизике не имеет большого значения. Но для понимания путей объединения ОТО и квантовой механики идея испарения черных дыр очень важна, благодаря ей появились законы квантовых полей в искривленном пространстве-времени.

Черные дыры с массой гораздо меньше двух масс Солнца (если бы они могли существовать) испарялись бы гораздо быстрее, чем за 1067 лет. Такие маленькие черные дыры не могут возникнуть сегодня во Вселенной, поскольку давление вырождения и ядерные силы препятствуют схлопыванию объектов столь малых масс, даже если сжимать их со всей силой, на которую способна современная Вселенная (главы 4 и 5). Но такие дыры могли образоваться во время Большого взрыва, когда плотность вещества была чудовищно высока и на него действовали давления и силы гравитационного сжатия, намного превосходящие те, что можно обнаружить в любой современной звезде.

Детальные расчеты, проведенные Хокингом, Зельдовичем, Новиковым и др., показали, что во время Большого взрыва могли возникнуть крошечные черные дыры из вещества, имеющего мягкое уравнение состояния (при котором сжатие приводит к незначительному увеличению давления). Мощные силы сжатия со стороны фрагментов окружающего вещества в очень ранней Вселенной могут приводить к образованию крошечных черных дыр, так же как при сжатии углерода между двумя пятами наковальни может образовываться алмаз.

Довольно заманчивым представляется способ поиска таких крошечных первичных черных дыр с помощью частиц, которые они испаряют. Черные дыры с массой менее 500 млрд килограммов (5х1014 г — это вес скромной по размерам горы) к настоящему моменту уже должны были полностью испариться, а черные дыры, которые в несколько раз тяжелее, должны сейчас интенсивно испаряться. Такие черные дыры имеют горизонты событий с размером порядка атомного ядра.

Большая часть энергии, излучаемой при испарении таких дыр, должна в настоящее время находиться в виде гамма-излучения (фотонов высоких энергий), путешествующего во Вселенной во всех направлениях. Гамма-излучение действительно существует, но его интенсивность и свойства легко можно объяснить другими механизмами. Отсутствие избыточного гамма-излучения, как показали расчеты Хокинга и Пейджа, свидетельствует о том, что в настоящее время в кубическом световом годе пространства должно быть не более 300 крошечных сильно испаряющихся черных дыр. А из этого, в свою очередь, следует, что во время Большого взрыва уравнение состояния вещества не могло быть слишком мягким.

Скептики могут сказать, что отсутствие избыточного гамма-излучения может объясняться по-другому: возможно, во время Большого взрыва образовалось много маленьких черных дыр; но физики переоценивают свое знание законов поведения квантовых полей в искривленном пространстве-времени, и черные дыры вовсе не испаряются. Мы с коллегами не придерживаемся такого скептицизма, потому что стандартные законы искривленного пространства-времени очень красиво объединяются с законами квантовых полей и дают уникальную систему законов, которые можно применять для квантовых полей в искривленном пространстве-времени. Несмотря на это, мы чувствовали бы себя гораздо уютнее, если бы астрономы нашли наблюдательные доказательства испарения черных дыр.

 

 

ВНУТРИ ЧЕРНЫХ ДЫР

 

 

глава, в которой физики борются с уравнением Эйнштейна и пытаются понять, что скрыто внутри черных дыр: путь в другую Вселенную? Сингулярность с бесконечными приливными гравитационными силами? Конец пространства и времени и рождение квантовой пены?


Поделиться с друзьями:

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.054 с.