Галактический частотный пьедестал. — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Галактический частотный пьедестал.

2019-08-07 125
Галактический частотный пьедестал. 0.00 из 5.00 0 оценок
Заказать работу

В статистике лучевых скоростей имеется ещё одна поразительная корреляция: между лучевой скоростью звезды (относительно нас!) и расстоянием звезды от центра Галактики. Поразительным здесь является то, что радиальный профиль галактического распределения средних лучевых скоростей переходит через ноль как раз на радиусе расположения Солнечной системы – а это, опять же, означает, что мы находимся в каком-то привилегированном месте Галактики. Отбрасывая этот вариант, как ничем не обоснованный, мы должны допустить, что средние сдвиги спектральных линий звёзд, скоррелированные с расстояниями звёзд от центра Галактики, также имеют не допплеровскую природу.

Наша версия о природе этих сдвигов такова: они являются гравитационными, т.е. они обусловлены галактическим радиальным распределением гравитационного потенциала. Спектры двух одинаковых звёзд, находящихся на различных удалениях от центра Галактики, будут соответствующим образом сдвинуты друг относительно друга.

В терминах нашей концепции об иерархии частотных склонов [6] можно сказать, что галактический частотный пьедестал, на котором расположены частотные «воронки» звёзд, не является плоским. Он является либо выпуклым, с возвышением в центре Галактики и со склонами к её периферии, либо, наоборот, вогнутым. В обоих этих случаях, для звёзд, расположенных на галактическом частотном пьедестале достаточно «выше», чем Земля, могли бы наблюдаться сдвиги спектров в сторону коротких длин волн. Но в случае выпуклого пьедестала такие звёзды располагались бы, преимущественно, ближе к центру Галактики, чем Земля, а в случае вогнутого – наоборот, дальше. Поскольку Земля находится, фактически, на периферии Галактики, а случаев значительных смещений спектров в сторону коротких длин волн в два-три раза больше, чем в сторону длинных, то мы отдаём предпочтение выпуклому пьедесталу. В пользу такого выбора свидетельствует и тот факт, что звёзды с самыми большими «скоростями приближения» наблюдаются, как правило, вдоль части Млечного Пути, примыкающей к созвездию Стрельца, в направлении которого находится центр Галактики.

Можно привести примерный радиальный профиль галактического частотного пьедестала, полученный на основе данных работы [7], где содержатся сведения о лучевых скоростях 305-ти долгопериодических переменных – своеобразных «маяков Галактики». Максимальная «скорость приближения», приведённая в [7], составляет 191 км/с. Примем, в качестве грубой оценки, что для звёзд вблизи центра Галактики эта величина составляет 200 км/с, что соответствует относительному перепаду частот в 6.7×10-4; воспользуемся также справочным значением расстояния Солнца от центра Галактики: 8.2×103 парсек [8]. Соответствующий частотный профиль изображён на Рис.2; с помощью засечек показаны эквивалентные лучевые скорости (в км/с).

 

 
 


Рис.2. Радиальный профиль галактического частотного пьедестала.

 


Из гипотезы о выпуклом галактическом частотном пьедестале следует, например, что частоты квантовых пульсаторов в центре Галактики должны быть больше аналогичных частот на Земле примерно на 0.07%. В частности, масса свободного электрона в межзвездном пространстве вблизи центра Галактики должна быть примерно на 340 эВ больше, чем на Земле. Также интересно отметить, что в областях межзвёздного пространства, не затронутых частотными «воронками» звёзд, должен иметь место ничтожный по крутизне галактический частотный склон, сообщающий пробным телам ускорение от центра Галактики к её периферии. Так, на радиусе расположения Солнечной системы, величина этого «ускорения свободного взлёта» составляла бы примерно 2.5×10-15 м/с2. Следует иметь в виду, что геометрия галактического частотного пьедестала, как и геометрия частотных склонов вообще, отнюдь не обусловлена каким-либо распределением масс [9].

Гипотеза о выпуклом галактическом частотном пьедестале позволила бы не только объяснить сдвиги спектров звёзд, скоррелированные с удалением звезды от центра Галактики. Наш коллега В.И.Беленко сразу же заметил: если гипотеза верна, то, зная форму пьедестала, можно построить новую независимую шкалу расстояний в Галактике, так необходимую астрономам.

 

Заключение.

Как мы постарались показать, некоторые проблемы в звёздной спектроскопии разрешаются, если отказаться от объяснения сдвигов спектральных линий звёзд единственно действием эффекта Допплера. Предложены альтернативные объяснения: во-первых, на основе модели «плавающих» рекомбинационных спектров излучающей плазмы, и, во-вторых, на основе гипотезы о галактическом частотном пьедестале.

Отказ от интерпретации сдвигов спектральных линий звёзд единственно на основе принципа Допплера означает, что нам по-прежнему остаётся неизвестна картина лучевых скоростей, а, значит, и картина пространственных движений звёзд в Галактике. Впрочем, имеющиеся на сегодня огромные массивы данных в каталогах лучевых скоростей являются, как мы полагаем, бесценной информацией, позволяющей судить о геометрии галактического частотного пьедестала.

 

Автор очень признателен В.Н.Ключникову за любезное предоставление раритетных изданий, а В.И.Беленко, А.В.Новосёлову и А.Н.Малимону – за полезную дискуссию.

 

Ссылки.

 

1. А.А.Гришаев. Навигатор квантовых перебросов энергии.

2. О.Струве, В.Зебергс. Астрономия ХХ века. М., «Мир», 1968.

3. А.Соколов. Описательная астрономия. М., «Студенческое изд-во», 1915.

4. Д.Я.Мартынов. Курс общей астрофизики. М., «Наука», 1988.

5. А.А.Белопольский. Астроспектроскопия. Т.3 курса астрофизики в 5-ти томах. Петроград, «Научное книгоиздательство», 1921.

6. А.А.Гришаев. Иерархия частотных склонов в роли «светоносного эфира».

7. P.W.Merrill. The radial velocities of long period variable stars. Astrophys.Journal, 94, 2 (1941) 171.

8. Таблицы физических величин. Справочник под ред. акад. И.К.Кикоина. М., «Атомиздат», 1976.

9. А.А.Гришаев. О всемирном тяготении: всё ли вещество оказывает притягивающее действие?


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.015 с.