Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...
Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...
Топ:
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Особенности труда и отдыха в условиях низких температур: К работам при низких температурах на открытом воздухе и в не отапливаемых помещениях допускаются лица не моложе 18 лет, прошедшие...
Теоретическая значимость работы: Описание теоретической значимости (ценности) результатов исследования должно присутствовать во введении...
Интересное:
Финансовый рынок и его значение в управлении денежными потоками на современном этапе: любому предприятию для расширения производства и увеличения прибыли нужны...
Распространение рака на другие отдаленные от желудка органы: Характерных симптомов рака желудка не существует. Выраженные симптомы появляются, когда опухоль...
Подходы к решению темы фильма: Существует три основных типа исторического фильма, имеющих между собой много общего...
Дисциплины:
2017-05-13 | 1038 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Билет 1.
Модель. Понятие формализации. Этапы моделирования.
Модель – это упрощенное подобие реального объекта, отражающее свойства объекта, существенные с точки зрения цели моделирования. Моделирование – это деятельность человека по созданию модели (натуральной или информационной). Формализация есть результат перехода от реальных свойств моделируемой системы к их формальному обозначению в определенной знаковой системе. Натуральные модели – глобус, манекен, автомобиль и т.д. Информационные модели – это описание (словесное, графическое и т.д.).
Первый этап - постановка задачи включает в себя стадии: описание задачи, определение цели моделирования, анализ объекта. Ошибки при постановке задачи приводят к наиболее тяжелым последствиям!
Второй этап - формализация задачи связан с созданием формализованной модели, то есть модели, записанной на каком-либо формальном языке. Например, данные переписи населения, представленные в виде таблицы или диаграммы — это формализованная модель.
В общем смысле формализация - это приведение существенных свойств и признаков объекта моделирования к выбранной форме.
Формальная модель -это модель, полученная в результате формализации.
Третий этап - разработка компьютерной модели начинается с выбора инструмента моделирования, другими словами, программной среды, в которой будет создаваться, и исследоваться модель.
От этого выбора зависит алгоритм построения компьютерной модели, а также форма его представления. В среде программирования - это программа, написанная на соответствующем языке. В прикладных средах (электронные таблицы, СУБД, графических редакторах и т. д.) - это последовательность технологических приемов, приводящих к решению задачи.
|
Следует отметить, что одну и ту же задачу можно решить, используя различные среды. Выбор инструмента моделирования зависит, в первую очередь, от реальных возможностей, как технических, так и материальных.
Четвертый этап — компьютерный эксперимент включает две стадии: тестирование модели и проведение исследования.
· Тестирование модели - процесс проверки правильности построения модели.
На этой стадии проверяется разработанный алгоритм построения модели и адекватность полученной модели объекту и цели моделирования.
Билет 2.
Предмет методики преподавания информатики. Методическая система обучения информатике в школе, общая характеристика ее основных компонентов.
Методика преподавания информатики – молодая наука, но она формируется не на пустом месте. Опережающие фундаментальные дидактические исследования целей и содержания общего кибернетического образования, накопленный отечественной школой ещё до введения предмета информатики практический опыт преподавания учащимся элементов логики, вычислительной и дискретной математики, проработка важных вопросов общеобразовательного подхода к обучению информатике имеют в общей сложности почти полувековую историю. Будучи фундаментальным разделом педагогической науки, методика информатики опирается в своем развитии на философию, педагогику, психологию, информатику (в том числе и школьную), а также обобщенный практический опыт средней школы.
Информатика – наука о процессах передачи, обработки, хранения информации.
Методическая система обучения: МСО дисциплины в целом и МСО подразделов. Также выделяется «специальная методика»: определить значение и суть обучения информатике в общеобразовательной средней школе, выделить школьную информатику среди других общеобразовательных дисциплин в России и за рубежом.
МСО – это цели, содержание, методы обучения, средства обучения, организационные формы.
|
Цели: формирование основ научного мировоззрения, формирование общеучебных и общекультурных навыков работы с информацией, подготовка школьников к последующей профессиональной деятельности, овладение информационными и телекоммуникационными технологиями как необходимое условие перехода к системе непрерывного образования.
Содержание: определяется обязательным минимумом образования по информатике – уровень А для учащихся любого ОУ, уровень Б – более расширенный обязательный минимум (в общем, это те ЗУН, которыми должен овладеть учащийся в процессе обучения).
Методы обучения (способы совместной деятельности учителя и учащихся, направленные на достижение целей и решение задач обучения): словесные (рассказ, объяснение, беседа, дискуссия, лекция, работа с книгой), наглядные (метод иллюстраций и метод демонстраций), практические (упражнения, лабораторные и практические работы). На уроках информатики могут использоваться любые из них в зависимости от темы.
Средства обучения (материальный или идеальный объект, который использован учителем и учащимися для усвоения новых знаний): это могут быть учебно-познавательные задачи, игры, ИТ, проблемное обучении и т.д. В силу специфики информатики на уроках активнее всего используются ТСО, мультимедийные, информационные технологии.
Организационные формы (формы организации учебного процесса): традиционные (фронтальная, индивидуальная, групповая) и новационные. Традиционные формы детерминированы классно-урочной системой и коллективным воспитанием. При изменении традиционных форм возникают инновационные формы. На уроках информатики могут использоваться как традиционные формы при объяснении нового материала и проверки знаний, так и новационные, обусловленные индивидуализацией обучения (которую предоставляют ИТ, отдельные рабочие места с компьютерами).
Преподавание информатики определяет стандарт школьного образования по информатике. Он способствует сохранению единого образовательного пространства страны, выделению того общеобразовательного, инвариантного конкретным школьным программам обучения минимума знаний и умений по информатике, который будет гарантирован для каждого выпускника школы. Введение стандарта развивает правовые и организационные основы многообразия систем обучения, творчества учителей. Стандарт отражает только минимально необходимый набор содержания, а последовательность, логика изучения предмета определяется школьной программой обучения.
|
Сравнение растровой и векторной компьютерной графики.
I. Растровая графика.
Растровые графические изображения формируются в процессе сканирования существующих на бумаге или фотопленке рисунков и фотографий, а также при использовании цифровых фото- и видео- камер.
Можно создавать растровые графические изображения непосредственно на компьютере с использованием графического редактора.
Растровое изображение создается с использованием точек различного цвета – пикселей –, которые образуют строки (1024) и столбцы (768). Каждый пиксель может принимать любой цвет из палитры.
Растровые изображения очень чувствительны к масштабированию (увеличению или уменьшению). При уменьшении растрового изображения несколько соседних точек преобразуются в одну, поэтому теряется четкость мелких деталей изображения. При его увеличении увеличивается размер каждой точки и появляется ступенчатый эффект, который можно увидеть невооруженным глазом.
II. Векторная графика.
Векторные графические изображения используются для хранения высокоточных графических объектов (чертежей, схем), для которых имеет значение сохранение четких и ясных контуров.
Векторные изображения формируются из объектов – точка, линия, окружность, прямоугольник и т.д. –, которые называются графическими примитивами.
Достоинством векторной графики является то, что векторные графические изображения могут быть увеличены или уменьшены без потери качества. Это возможно, т.к. масштабирование изображений производится с помощью простого умножения координат точек графических примитивов на коэффициент масштабирования.
Билет 3.
Цветовая модель RGB.
RGB (аббревиатура английских слов r ed, g reen, b lue — красный, зелёный, синий) или КЗС — аддитивная цветовая модель, как правило, описывающая способ кодирования цвета для цветовоспроизведения.
|
Выбор основных цветов обусловлен особенностями физиологии восприятия цвета сетчаткой человеческого глаза. Цветовая модель RGB нашла широкое применение в технике.
Аддитивной она называется потому, что цвета получаются путём добавления (англ. addition) к чёрному цвету. Иначе говоря, если цвет экрана, освещённого цветным прожектором, обозначается в RGB как (r1, g1, b1), а цвет того же экрана, освещенного другим прожектором, — (r2, g2, b2), то при освещении двумя прожекторами цвет экрана будет обозначаться как (r1+r2, g1+g2, b1+b2).
Изображение в данной цветовой модели состоит из трёх каналов. При смешивании основных цветов (основными цветами считаются красный, зелёный и синий) — например, синего (B) и красного (R), мы получаем пурпурный (M magenta), при смешении зелёного (G) и красного (R) — жёлтый (Y yellow), при смешении зелёного (G) и синего (B) — циановый (С cyan). При смешении всех трёх цветовых компонентов мы получаем белый цвет (W white).
В телевизорах и мониторах применяются три электронных пушки (светодиода, светофильтра) для красного, зелёного и синего каналов.
Наиболее распространённое цветовое пространство sRGB, использующееся с цветовой моделью RGB, имеет по многим тонам цвета более широкий цветовой охват (может представить более насыщенные цвета), чем типичный охват цветов цветовых пространств в CMYK, поэтому иногда изображения, замечательно выглядящие в RGB, значительно тускнеют и гаснут в CMYK.
Билет 4.
1. Формирование основных понятий в содержании образования по информатике.
процесс формирования понятий у учащихся осуществляется по схеме: предметы и связанные с ними ощущения восприятие представление понятие определении систематизация и классификация. Данная схема очень абстрактна и требует уточнений. Понятие связано с классами объектов, которые оно охватывает — объем понятия — и с перечнем тех свойств (существенных и несущественных), которыми обладают объекты данного класса – содержание понятия. Существенные свойства – это такая совокупность необходимых свойств, которыми должны обладать все объекты данного класса. Именно на этапе представления у учащихся формируется система этих свойств.
Формирование основных понятий курса информатики является достаточно длительным процессом, особенностью которого является постоянное обращение к ранее изученному материалу. Такая цикличность в обучении основным понятиям, возвращение к ним каждый раз на новой, более высокой ступени познания, позволяет достигнуть надежного усвоения их смысла и содержания. При этом учителю следует всегда иметь в виду главные цели изучения информатики – это общеобразовательные, развивающие и практические. Достижению этих целей будет способствовать следование следующим методическим принципам.(Электронный учебник для студентов педагогических специальностей вузов, Саратов, 2008 год)
|
1) Принцип системности. В ходе изучения курса необходимо выстраивать в сознании учащихся взаимосвязанную систему понятий. Им должна быть видна структура курса, место каждого раздела и понятия в общей структуре. Как говорится, учащиеся должны «за деревьями видеть лес», состоящий из всей системы понятий информатики.
2) Принцип параллельности в освоении фундаментальной и практической составляющих курса. Реализация этого принципа означает, что необходимо параллельно и одновременно изучать как фундаментальные, основные понятия, так и те понятия, которые составляют содержание практического компонента курса информатики. Также при изучении информационно-коммуникационных технологий в содержании обучения должна обязательно присутствовать и система фундаментальных понятий.
3) Принцип самообучения и взаимообучения учащихся. Информатика является молодой и быстроразвивающейся наукой. Особенно быстро развиваются информационные технологии. Поэтому человеку, работающему на компьютере, приходится постоянно учиться как новым средствам, приёмам работы и технологиям, так и новым понятиям. Следовательно, необходимо обучать учащихся методике самообучения и взаимообучения. При этом следует учить пользоваться справочной литературой, быстро находить в ней нужную информацию, пользоваться встроенными в программы электронными справочными системами. Отдельно стоит задача обучения пользоваться справочными ресурсами Интернет.
Разумеется, перечисленные принципы не отвергают общедидактические принципы, установленные педагогической наукой ещё со времён Коменского, они лишь их дополняют применительно к изучению нового учебного предмета, каким является информатика.
Возвращаясь к процессу формирования понятий, выделим следующие методические требования и рекомендации. Начальным этапом формирования понятий является мотивация. Цель данного этапа – подчеркнуть важность и значимость изучения того или иного понятия. Второй этап – выявление существенных признаков (свойств) понятия, которые входят в определение этого понятия. На этапе усвоения определения понятия каждых существенный признак становится объектом изучения. Важно научить детей выделять из всех признаков именно существенные. Это необходимо для полного понимания и усвоения определения понятия.
На следующем этапе идет использование понятия на практике в конкретных ситуациях. На данном этапе учитель может четко определить насколько данное определение понятно ученикам, а если возникли трудности, то найдет их источник.
Понятие мультимедиа.
Мультимедиа (англ. multimedia) — контент, или содержимое, в котором одновременно представлена информация в различных формах — звук, анимированная компьютерная графика, видеоряд. Например, в одном объекте-контейнере может содержаться текстовая, аудиальная, графическая и видеоинформация, а также, возможно, способ интерактивного взаимодействия с ней. Это достигается использованием определённого набора аппаратных и программных средств.
Термин мультимедиа также зачастую используется для обозначения носителей информации, позволяющих хранить значительные объемы данных и обеспечивать достаточно быстрый доступ к ним (первыми носителями такого типа были компакт-диски). В таком случае термин мультимедиа означает, что компьютер может использовать такие носители и предоставлять информацию пользователю через все возможные виды данных, такие как аудио, видео, анимация, изображение и другие в дополнение к традиционным способам предоставления информации, таким как текст.
Билет 5.
Компьютерная графика. Классификация. Примеры.
Аппаратное обеспечение компьютера - это все электронные и механические устройства компьютера.
В растровой графике изображение представляется множеством точек (пикселей), размещаемых по фиксированным строкам (растрам). Она, в основном, используется при работе с картинками, полученными при фотографии, киносъемке, сканировании, поэтому главным назначениям средств работы с такой графикой можно назвать редактирование изображений. Примером приложений для работы с растровой графикой можно назвать программу AdobePhotoshop (с форматом файлов.pcd), редактор Paint (.bmp). Для сканированных изображений широко известен формат.tiff, а для передачи растровых изображений по сети Internet наиболее известными являются форматы.gif и.jpg.
Растровая графика при реализации требует большого объема дисковой и оперативной памяти, т.к. при хранении и обработке изображения кодируется каждый пиксель. Качество растрового изображения зависит от разрешающей способности экрана (например, 800х600 или 1152х864 пикселей). При изменении разрешающей способности изображение может искажаться.
Векторная графика предназначена для создания изображений в виде совокупности линий (векторов). Такие картинки широко используются в редакционной, оформительской, чертежной, проектно-конструкторской работе, в картографии. Примером приложений, работающих с векторной графикой, можно назвать AdobeIllustrator, AutoCAD, CorelDraw и др. Наиболее известными форматами векторных изображений являются:.eps,.dcs,.pdf,.cdr,.cmx.
Билет 6.
Piktochart
Piktochart – это веб-инструмент, в котором есть шесть приятных бесплатных шаблонов (в платной версии их намного больше) для создания простой графики.
Сервис позволяет вставлять фигуры и изображения перетаскиванием, кроме того, у пользователей есть много возможностей для персонализации. |
Можно добавлять простые графики, гистограммы и секторные диаграммы на основе данных из CSV-файлов или вводить их напрямую. Возможен экспорт файлов в форматы PNG и JPG в разрешениях для печати и для веб. Обратите внимание: при использовании бесплатной версии в нижней части загруженного PNG- или JPG-изображения появляется маленький водяной знак Piktochart.
Easel.ly
Другой бесплатный онлайн-сервис для создания инфографики – Easel.ly. С ним не получится создать график на основе реальных данных, но он отлично подходит для визуализации идей и историй.
У Easel.ly красивый интерфейс и великолепные стартовые шаблоны. В них есть поддержка многих востребованных функций: создания карт, блок-схем, сравнительных диаграмм и схем, отражающих связи между различными элементами. |
Инструмент отличается самым широким набором объектов (люди, коллекции иконок, достопримечательности, карты, животные и т.д.) и фонов из всех, что я видела. Кроме того, в бесплатной версии можно загружать собственные изображения. JPG-файл можно сохранить в разрешении для веб. Сервис находится в стадии бета-тестирования, но, на мой взгляд, работать с ним уже достаточно удобно.
Билет 7.
1. Место курса информатики в системе учебных дисциплин. Система межпредметных связей информатики.
В педагогической литературе имеется более 40 определений категории «межпредметные связи», существуют самые различные подходы к их педагогической оценке и различные классификации.
Так, большая группа авторов определяет межпредметные связи как дидактическое условие, причем у разных авторов это условие трактуется неодинаково.
Например: межпредметные связи исполняют роль дидактического условия повышения эффективности учебного процесса [7]; межпредметные связи как дидактическое условие, обеспечивающее последовательное отражение в содержании школьных естественнонаучных дисциплин объективных взаимосвязей, действующих в природе [13].
Ряд авторов дает такие определения межпредметных связей: «Межпредметные связи есть отражение в курсе, построенном с учетом его логической структуры, признаков, понятий, раскрываемых на уроках других дисциплин» [2], «Межпредметные связи представляют собой отражение в содержании учебных дисциплин тех диалектических взаимосвязей, которые объективно действуют в природе и познаются современными науками»[11], или такое «межпредметные связи в обучении отражают комплексный подход к воспитанию и обучению, позволяют вычленить как главные элементы содержания образования, так и взаимосвязи между предметами» [10].
В данной курсовой работе, как наиболее точное, будем использовать такое определение межпредметных связей: «Межпредметные связи есть педагогическая категория для обозначения синтезирующих, интегративных отношений между объектами, явлениями и процессами реальной действительности» [12].
В специальной литературе межпредметные связи классифицируются по форме и типу связей [14].
Классификация межпредметных связей. Таблица 1
Формой является внутренняя структура предмета. Выделяются следующие формы связей:
· по составу.
· по направлению действия.
· по способу взаимодействия направляющих элементов.
Исходя из того, что состав межпредметных связей определяется содержанием учебного материала, формируемыми навыками, умениями и мыслительными операциями, то в первой их форме выделяются следующие типы межпредметных связей:
· содержательные;
· операционные;
· методические;
· организационные.
Межпредметные связи по составу показывают – что используется, трансформируется из других учебных дисциплин при изучении конкретной темы.
Межпредметные связи по направлению показывают:
является ли источником межпредметной информации для конкретно рассматриваемой учебной темы, изучаемой на широкой межпредметной основе, один, два или несколько учебных предметов.
Используется межпредметная информация только при изучении учебной темы базового учебного предмета (прямые связи), или же данная тема является также «поставщиком» информации для других тем, других дисциплин учебного плана школы (обратные или восстановительные связи).
Временной фактор показывает:
какие знания, привлекаемые из других школьных дисциплин, уже получены учащимися, а какой материал еще только предстоит изучать в будущем (хронологические связи);
какая тема в процессе осуществления межпредметных связей является ведущей по срокам изучения, а какая ведомой (хронологические синхронные связи).
как долго происходит взаимодействие тем в процессе осуществления межпредметных связей.
Вышеприведенная классификация межпредметных связей позволяет аналогичным образом классифицировать внутрикурсовые связи (связи, например, между ботаникой, зоологией, анатомией и общей биологией – курса биологии; связи между неорганической и органической химией – курса химии…), а также внутрипредметные связи между темами определенного учебного предмета, например ботаники, органической химии, новейшей истории. Во внутрикурсовых и внутрипредметных связях из хронологических видов преобладают преемственные и перспективные виды связей, тогда как синхронные резко ограничены, а во внутрипредметных связях синхронный вид вообще отсутствует.
Таким образом, классификация межпредметных связей показывает формы, типы и виды связей, а также позволяет классифицировать внутрикурсовые и внутрипредметные связи.
Билет 8.
Билет 9.
Билет 10.
Билет 11.
1. Кабинет информатики: нормативное обеспечение (журнал ТБ, СанПин, др.); оборудование; организации работы; санитарно-гигиенические требования к организации работы в кабинете информатики.
Паспорт кабинета информатики – правила, ТБ, санпин и т.д. (как первый урок в новом учебном году).
Билет 12.
Содержание и организация внеклассной работы по информатике. Проектная деятельность по информатике.
Являясь составной частью воспитательной работы в школе, внеклассная работа по информатике направлена на достижение общей цели обучения и воспитания – создание условий, способствующих развитию интеллектуальных, творческих, личностных качеств учащихся, их социализации и адаптации в обществе с учетом индивидуальных и возрастных особенностей в рамках воспитательной системы школы.
Внеклассные мероприятия повышают интерес к предмету, побуждают к самостоятельной работе на уроке и к постоянному поиску чего-то нового. Обучаясь или участвуя во внеклассных мероприятиях, дети познают окружающую действительность, фантазируют, у них появляется возможность раскрыться и выразиться творчески.
Выделяют следующие виды внеклассной работы:
1. Работа с учащимися, отстающими от других в изучении программного материала, т.е. дополнительные занятия
2. Работа с учащимися, проявляющими интерес и склонность к информатике.
3. Работа с учащимися по развитию интереса в изучении информатики.
Основной целью первого вида внеклассной работы является ликвидация пробелов и предупреждение неуспеваемости, эта работа имеет ярко выраженный индивидуальный характер и требует от учителя особого такта.
Последние два вида – это и есть, собственно говоря, внеклассная работа в традиционном понимании смысла этого термина.
Цели второго вида внеклассной работы могут быть очень разнообразны и зависят от интересов и учителя, и учащихся.
Третий вид внеклассной работы может иметь подобные цели, но ее содержание и формы проведения определяет учитель, при этом основной целью является развитие интереса учащихся к информатике.
В целом внеклассная работа как педагогическая система направлена на решение следующих задач:
1. усовершенствование умений и навыков, приобретенных на уроках;
2. создание благоприятных условий для сплочения коллектива, развития навыков сотрудничества;
3. расширение мировоззрения учащихся, развитие познавательного интереса, поскольку склонность школьников к тому или иному предмету практически невозможно удовлетворить в рамках только учебной программы;
4. организация свободного времени учащихся.
Билет 13.
1. Тематическое и поурочное планирование по курсу информатики.
В тематическом плане должна быть отражена логическая структура учебного материала уроков, опорные знания из других курсов и перспективные связи. Составляя тематический план, учитель наглядно видит, для чего, с какой познавательной целью на отдельных уроках необходимо использовать те или иные задания из других курсов:
в одних случаях создается опора для введения новых понятий,
в других объясняются причинно-следственные связи в изучаемых явлениях,
в третьих конкретизируются общие идеи или доказываются выводы, новые теоретические положения и т.п.
В зависимости от познавательных целей использования межпредметных связей отбираются методы и приемы их осуществления, формулируются вопросы и задания для учащихся.
Общая схема тематического планирования межпредметных связей может быть представлена в форме таблицы (Таблица 3):
Тема «...................» Класс «................»Таблица 3
Данная форма может быть изменена учителем в зависимости от конкретных условий установления межпредметных связей в обучении. Такое планирование создаёт у учителя общее представление о том, какие знания и из каких предметов необходимо учащимся повторить к каждому уроку, какие понятия и знания из других предметов следует, привлечь к раскрытию основных понятий учебной темы и какие мировоззренческие идеи будут развиваться на основе межпредметных связей. Знания из разных предметов помогают поднять обобщение учебного материала темы на мировоззренческий уровень.
Такое планирование учитывает многообразие видов межпредметных связей и позволяет выделить основные направления активизации познавательной деятельности учащихся в процессе изучения учебной темы. В целях эффективной организации учебно-познавательной деятельности учеников по осуществлению межпредметных связей полезно спланировать их систему на каждом уроке учебной темы.
Поурочное планирование.
Конкретизация использования межпредметных связей в процессе обучения достигается с помощью поурочного планирования. Поурочный план-разработка показывает, когда, на каком этапе урока и как, какими способами включаются знания из других курсов в изучение нового или закрепление учебного материала. Особенно необходима тщательная разработка обобщающего урока с межпредметными связями. Выделение таких уроков производится на основе тематического планирования.
Составляя поурочные планы, учителю важно знать, что учащиеся уже освоили из необходимых опорных знаний на уроках по другим предметам, согласовать с учителями смежных предметов постановку вопросов и заданий, чтобы избежать дублирования и достигнуть развития общих идей и понятий, их углубление и обогащения. Этому помогает посещение уроков и изучение составляемых коллегами планов реализации межпредметных связей.
Планы могут быть обсуждены на методических комиссиях по циклам предметов, согласованы с завучем школы. Обсуждение планов позволяет предупредить ошибки в использовании знаний из других предметов, устранить неточности в формулировке вопросов, в трактовке понятий смежных курсов, определить единые подходы в объяснении сущности изучаемых процессов и явлений, избрать наиболее рациональные методы обучения.
Таким образом, планирование составляет необходимое и существенное звено подготовки учителя к эффективному осуществлению межпредметных связей и является одним из средств их реализации в практике обучения школьников.
Билет 14.
Билет 15.
Цветовая модель CMYK.
Цветовая модель CMYK в отличие от RGB описывает поглощаемые цвета. Цвета, которые используют белый свет, вычитая из него определённые участки спектра, называются субтрактивными (вычитательными). Именно такие цвета и используются в модели CMYK. Они получаются путём вычитания из белого аддитивных цветов модели RGB.
Основными цветами в CMYK являются голубой (Cyan), пурпурный (Magenta) и жёлтый (Yellow). Голубой цвет получается путём вычитания из белого красного цвета, пурпурный - зелёного, жёлтый - синего.
На рисунке видно, какие цвета получаются при смешении базовых цветов CMYK. Теперь при смешении всех трёх цветов получается чёрный цвет, т.е. сложение цветов в CMYK аддитивно.
Цветовая модель CMYK является основной для печати. В цветных принтерах также применяется данная модель. Получается, что для того, чтобы распечатать чёрный цвет, необходимо большое количество краски. Кроме того смешение всех цветов модели CMYK на самом деле даёт не чёрный, а грязно-коричневый цвет. Поэтому, для усовершенствования модели CMYK, в неё был введён один дополнительный цвет - чёрный. Он является ключевым цветом при печати, поэтому последняя буква в названии модели - K (Key), а не B. Таким образом, модель CMYK является четырёхканальной.
Дело в том, что у CMYK цветовой охват более узкий, чем у RGB. Поэтому, при конвертации изRGBв CMYK часть цветов теряется. Это необходимо учитывать, если Вы работаете в графических редакторах. С другой стороны Вы можете использовать конвертацию для того, чтобы посмотреть, какой приблизительно вид будет иметь RGB-рисунок распечатанный на принтере.
Билет 16.
Этап
Учащиеся повторяют необходимые сведения из соответствующих дисциплин
Этап
Учитель объясняет новый учебный материал, используя факты и понятия из одного учебного предмета, на примерах из другого.
Этап
Учитель излагает новый материал, привлекая теорию из смежной дисциплины для объяснения рассматриваемых явлений.
Вторая ступень – использование знаний
Цель – перенос знаний из предмета в предмет
Этап
Учащиеся должны самостоятельно воспроизводить отдельные знания фактического или теоретического характера из смежной дисциплины.
Этап
Учащиеся должны привлекать факты и понятия, усвоенные ими на уроках одной дисциплины, для подтверждения вновь усваиваемых знаний на уроках другой.
Этап
Учащиеся должны самостоятельно привлекать теорию, изученную на уроках одного предмета, для объяснения изучаемых явлений в курсе другого.
Третья ступень – обобщающая
Цель – обучить учащихся применять понятия, факты, законы и теории для иллюстрации единства мира, а также использовать общие законы диалектики для объяснения явлений.
Этап
Учитель объясняет проявление в изучаемых на уроках данной дисциплины явлениях общих законов диалектики.
Этап
Учитель объясняет место изучаемых явлений в общей картине мира.
Этап
Учащиеся воспроизводят общие законы диалектики при объяснении явлений, изучаемых на уроках данной дисциплины
Выделенные ступени и этапы довольно условны. В практической работе учителя этапы обучения учащихся переносу знаний из предмета в предмет могут в значительной мере варьироваться. Основная цель использования ступеней и этапов состоит, во-первых, в упорядочении работы учителей по реализации межпредметных связей в преподавании, во-вторых, они позволяют судить о достигнутых в работе результатах обучения, в-третьих, дают возможность оценить степень овладения учащимися умением переносить и использовать знания, полученные на занятиях смежных дисциплин. Всё это, безусловно, повышает уровень познавательной деятельности учащихся.
Таким образом, рассмотрев ступени и этапы использования межпредметных связей, следует отметить, для активизации познавательной деятельности учащихся необходимо упорядочить работу педагога, создать специальные условия для его успешной деятельности.
Билет 17.
1. Профильное обучение информатике на уровне среднего общего образования.
Профильное изучение информатики в старших классах.
Изучение информатики и информационных технологий на профильном уровне в старшей школе направлено на достижение следующих целей:
• систематизация знаний в области информатики и информационных технологий, полученные в основной школе, и углубления их с учетом профиля;
• развитие компетентности в использовании информационных и коммуникационных технологий на уровне квалифицированного пользователя в области общепользовательстких технологий, знакомства с профессиональными информационными технологиями;
• совершенствование навыков работы с информацией на уровне адекватного применения основных общепользовательских инструментов, использование возможностей ИКТ, выходящих за рамки общепользовательских, освоение минимального набора профессиональных инструментов;
• развитие умения применять навыки работы с информацией: искать, отбирать, критически оценивать, организовывать, представлять и передавать информацию, моделировать и проектировать объекты и процессы сообразно учебным и производственным целям;
• приобретение опыта разработки программных средств, ориентированных на решение задач профильной области;
• освоение системы знаний об информационных моделях(классификационных, динамических, логико-лингвисти-ческих) и системах, формирование умения использовать компьютерные модели при решении учебных задач, в том числе в соответствии с профилем обучения, а также практаических задач;
• формирование умения создавать и использования в познавательной и практической деятельности классификационные, динамические, логико-лингвистические, информационные модели;
• формирование умений самостоятельно создавать информационные модели процессов и объектов, характерных для профильной области; программные средства, ориентированные на решение задач в выбранной профильной области;
• приобретение опыта выполнения индивидуальных и коллективных проектов с применением информационных и коммуникационных технологий, прежде всего – в соответствии с профилем обучения, в том числе, с использованием профессиональных инструментов и компьютерных моделей; модификации стандартных инструментариев; применения формальных моделей для создания собственных программных средств;
• освоение основных методов познания природы и общества, характерных для информатики: использование информационных и коммуникационных технологий в наблюдении, регистрации, моделировании и анализе природных и социальных явлений в соответствии с профилем, предст
|
|
Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...
Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...
Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!