Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Структура спутниковых радионавигационных систем

2017-05-14 812
Структура спутниковых радионавигационных систем 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Исторические сведения

Развитие отечественной спутниковой радионавигационной системы (СРНС) ГЛОНАСС имеет уже практически сорокалетнюю историю, начало которой положено, как чаще всего считают, запуском 4 октября 1957 г. в Со­ветском Союзе первого в истории человечества искусственного спутника Зем­ли (ИСЗ). Измерения доплеровского сдвига частоты передатчика этого ИСЗ на пункте наблюдения с известными координатами позволили определить параметры движения этого спутника.

Обратная задача была очевидной: по измерениям того же доплеровского сдвига при известных координатах ИСЗ найти координаты пункта наблюдения.

Научные основы низкоорбитальных СРНС были существенно развиты в процессе выполнения исследований по теме "Спутник" (1958—1959 гг.). Основное внимание при этом уделялось вопросам повышения точности навигационных определений, обеспечения глобальности, круглосуточности применения и независимости от погодных условий.

Проведенные работы позволили перейти в 1963 г. к опытно-конструк­торским работам над первой отечественной низкоорбитальной системой, по­лучившей в дальнейшем название "Цикада".

В 1979 г. была сдана в эксплуатацию навигационная система 1-го поко­ления "Цикада" в составе 4-х навигационных спутников (НС), выведенных на круговые орбиты высотой 1000км, наклонением 83° и равномерным распреде­лением плоскостей орбит вдоль экватора. Она позволяет потребителю в сред­нем через каждые полтора-два часа входить в радиоконтакт с одним из НС и определять плановые координаты своего места при продолжительности нави­гационного сеанса до 5... 6 мин.

В ходе испытаний было установлено, что основной вклад в погрешность навигационных определений вносят погрешности передаваемых спутниками собственных эфемерид, которые определяются и закладываются на спутники средствами наземного комплекса управления. Поэтому наряду с совершенст­вованием бортовых систем спутника и корабельной приемоиндикаторной ап­паратуры, разработчиками системы серьезное внимание было уделено вопро­сам повышения точности определения и прогнозирования параметров орбит навигационных спутников.

Была отработана специальная схема проведения измерений параметров орбит средствами наземно-комплексного управления, разработаны методики прогнозирования, учитывающие все гармоники в разложении геопотенциала.

Проведены работы по уточнению координат измерительных средств и вычислению коэффициентов согласующей модели геопотенциала, предназначенной специ­ально для определения и прогнозирования параметров навигационных орбит. В результате точность передаваемых в составе навигационного сигнала собст­венных эфемерид была повышена практически на порядок и составляет в на­стоящее время на интервале суточного прогноза величину» 70... 80 м, а среднеквадратическая погрешность определения морскими судами своего ме­стоположения уменьшилась до 80... 100 м.

Для оснащения широкого класса морских потребителей разработаны и серийно изготавливаются комплектации приемоиндикаторной аппаратуры "Шхуна" и "Челн". В дальнейшем спутники системы "Цикада" были дооборудованы прием­ной измерительной аппаратурой обнаружения терпящих бедствие объектов, которые оснащаются специальными радиобуями, излучающими сигналы бедст­вия на частотах 121 и 406 Мгц. Эти сигналы принимаются спутниками систе­мы "Цикада" и ретранслируются на специальные наземные станции, где про­изводится вычисление точных координат аварийных объектов (судов, самоле­тов и др.).

Дооснащенные аппаратурой обнаружения терпящих бедствие спутники "Цикада" образуют системы "Коспас". Совместно с американо-франко-ка­надской системой "Сарсат" они образуют единую службу поиска и спасения, на счету которой уже несколько тысяч спасенных жизней.

Успешная эксплуатация низкоорбитальных спутниковых навигацион­ных систем морскими потребителями привлекла широкое внимание к спутни­ковой навигации. Возникла необходимость создания универсальной навига­ционной системы, удовлетворяющей требованиям всех потенциальных потре­бителей: авиации, морского флота, наземных транспортных средств и косми­ческих кораблей.

Выполнить требования всех указанных классов потребителей низкоорби­тальные системы в силу принципов, заложенных в основу их построения, не могли. Перспективная спутниковая навигационная система должна обеспечи­вать потребителю в любой момент времени возможность определять три про­странственные координаты, вектор скорости и точное время. Для получения потребителей трех пространственных координат беззапросным методом требу­ется проведение измерений навигационного параметра не менее чем до четы­рех спутников, при этом одновременно с тремя координатами местоположения потребитель определяет и расхождение собственных часов относительно шка­лы времени спутниковой системы.

Исходя из принципа навигационных определений, выбрана структура спутниковой системы, которая обеспечивает одновременную в любой момент времени радиовидимость потребителей, находящимся в любой точке Земли, не менее четырех спутников, при минимальной общем их количестве в системе. Это обстоятельство ограничило высоту орбиты навигационных спутников 20 тыс. км, (дальнейшее увеличение высоты не ведет к расширению зоны радиообзора, а, следовательно, и к уменьшению необходимого количества спутников в системе). Для гарантированной видимости потребителем не менее четырех спутников, их количество в системе должно составлять 18, однако оно было увеличено до 24-х с целью повышения точности определения собственных координат и скорости потребителя путем предоставления ему возможности выбора из числа видимых спутников четверки, обеспечивающей наивысшую точность.

Одной из центральных проблем создания спутниковой системы, обеспечивающей беззапросные навигационные определения одновременно по нескольким спутникам, является проблема взаимной синхронизации спутниковых шкал времени с точностью до миллиардных долей секунды (наносекуд), поскольку рассинхронизация излучаемых спутниками навигационных сигналов в 10 нс вызывает дополнительную погрешность в определении местоположения потребителя до 10... 15 м.

Решение задачи высокоточной синхронизации бортовых шкал времен потребовало установки на спутниках высокостабильных бортовых цезиевых стандартов частоты с относительной нестабильностью 1•1013 и наземного водородного стандарта с относительной нестабильностью 1×1014, а также создания наземных средств сличения шкал с погрешностью 3... 5 нс.

С помощью этих средств и специального математического обеспечения производится определение расхождений бортовых шкал времени с наземной шкалой и их прогнозирование для каждого спутника системы. Результат прогноза в виде поправок к спутниковым часам относительно наземных закладываются на соответствующие спутники и передаются ими в составе цифровой информации навигационного сигнала. Потребителями таким образом устанавливается единая шкала времени. Расхождение этой шкалы с наземной шкалой времени системы не превышает 15... 20 нс.

Второй проблемой создания высокоорбитальной навигационной систем является высокоточное определение и прогнозирование параметров орбит навигационных спутников.

Достижение необходимой точности эфемерид навигационных спутнике потребовало проведения большого объема работ по учету факторов второго порядка малости, таких как световое давление, неравномерность вращения Земли и движение ее полюсов, а также исключение действия на спутник в полете реактивных сил, вызванных негерметичностью двигательных установок газоотделением материалов покрытий.

Для экспериментального определения параметров геопотенциала на орбиты навигационных спутников были запущены два пассивных ИЗС "Эталон ("Космос-1989" и "Космос-2024"), предназначенных для измерения параметров их движения высокоточными квантово-оптическими измерительным средствами. Благодаря этим работам достигнутая в настоящее время точность эфемерид навигационных спутников при прогнозе на 30 ч составляет: вдоль орбиты — 20 м; по бинормали к орбите — 10 м; по высоте 5 м (СКО).

Летные испытания высокоорбитальной отечественной навигационной

системы, получившей название ГЛОНАСС, были начаты в октябре 1982 г. за­пуском спутника "Космос-1413"..."

В 1995 г. было завершено развертывание СРНС ГЛОНАСС до ее штат­ного состава (24 НС). В настоящее время предпринимаются большие усилия по поддержанию группировки.

Разработаны самолетная аппаратура АСН-16, СНС-85, АСН-21, наземная аппаратура АСН-15 (РИРВ), морская аппаратура "Шкипер" и "Репер" (РНИИ КП) и др.

Основным заказчиком и ответственным за испытания и управление сис­темами являются Военно-космические силы РФ.

В рассматриваемый период времени в США также проведены интенсив­ные разработки СРНС. В 1958 г. в рамках создания первого поколения атом­ных ракетных подводных лодок "Полярис" была создана система "Транзит" (аналог СРНС "Цикада"), введенная в строй в 1964 г.

В начале 70-х годов начаты работы по созданию СРНС второго поколе­ния — ОР5/"Навстар" (аналога отечественной системы ГЛОНАСС). Спутни­ковая радионавигационная система GPS полностью развернута в 1993 г.

В соответствии с Постановлением Правительства РФ № 237 от 7 марта 1995 г. основными направлениями дальнейших работ являются:

· модернизация СРНС ГЛОНАСС на основе модернизированного спутника ГЛОНАСС-М с повышенным гарантийным сроком службы (пять лет«и более вместо трех в настоящее время) и более высокими техническими характери­стиками, что позволит повысить надежность и точность системы в целом;

· внедрение технологии спутниковой навигации в отечественную эконо­мику, науку и технику, а также создание нового поколения навигационной аппаратуры потребителей, станций дифференциальных поправок и контроля целостности;

· разработка и реализация концепции российской широкозонной дифференциальной подсистемы на базе инфраструктуры Военно-космических сил ее взаимодействия с ведомственными региональными и локальными дифференциальными подсистемами, находящимися как на территории России, так и за рубежом;

· развитие сотрудничества с различными международными и зарубежными организациями и фирмами в области расширения использования возможностей навигационной системы ГЛОНАСС для широкого круга потребителей;

· решение вопросов, связанных с использованием совместных навигационных полей систем ГЛОНАСС и GPS в интересах широкого круга потребителей мирового сообщества: поиск единых подходов к предоставлен услуг мировому сообществу со стороны космических навигационных систем, согласование опорных систем координат и системных шкал времени; выработка мер по недопущению использования возможностей космических навигационных систем в интересах террористических режимов и группировок.

Работы в указанных направлениях ведутся в соответствии с требованиями, выдвигаемыми различными потребителями (воздушными, морскими речными судами, наземными и космическими средствами, топогеодезическими, землеустроительными и другими службами).

СРНС ГЛОНАСС

Центр управления системой

 

Центр управления системой соединен каналами автоматизированной и неавтоматизированной связи, а также линиями передачи данных со всеми элементами ПКУ, планирует и координирует работу всех средств ПКУ на основании принятого для ГЛОНАСС ежесуточною режима управления спутниками в рамках технологического цикла управления. При этом ЦУС собирает и обрабатывает данные для прогноза эфемерид и частотно-временных оправок, осуществляет с помощью, так называемого, баллистического центра расчет и анализ пространственных характеристик системы, анализ баллистической и структуры и расчет исходных данных для планирования работы элементов ПКУ.

Информацию, необходимую для запуска спутников, расчета параметров орбитального движения, управления ими в полете, ЦУС получает от системы единого времени и эталонных частот, системы определения параметров вращения Земли, системы мониторинга гелио- и геофизизической обстановки.

Центральный синхронизатор, взаимодействуя с ЦУС, формирует шкалу времени ГЛОНАСС, которая используется для синхронизации процессов и теме, например, в системе контроля фаз. Он включает в свой состав группу однородных стандартов.

Контрольные станции

Контрольные станции (станции управления, измерения и кон ля или наземные измерительные пункты) по принятой схеме радиоконтроля орбит осуществляют сеансы траёкторных и временных измерений, необходимых для определения и прогнозирования пространственного положения спутников и расхождения их шкал времени с временной шкалой ГЛОНАСС, а также собирают телеметрическую информацию о состоянии бортовых систем спутников. С их помощью происходит закладка в бортовые ЭВМ спутников массивов служебной информации (альманах, эфемериды, частотно-временные поправки и др.), временных программ и оперативных команд для управления новыми системами.

Траекторные измерения осуществляются с помощью радиолокационных станций, которые определяют запросным способом дальность до спутников и начальную скорость. Дальномерный канал характеризуется максимальной ошибкой около 2... 3 м. Процесс измерения дальности до спутника совмещают по времени с процессом закладки массивов служебной информации, временных программ и команд управления, со съемом телеметрических данных спутника.

Для эфемеридного обеспечения с КС в ЦУС ежесуточно выдается по каждому спутнику по 10... 12 наборов (сеансов) измеренных текущих навигационных параметров объемом примерно 1 Кбайт каждый.

В настоящее время для обеспечения работ ГЛОНАСС могут использоватьсяКС, рассредоточенные по всей территории России. Часть КС других элементов наземного сегмента ГЛОНАСС осталась вне территории России (в странах СНГ) и может быть использована лишь при наличии соответствующих договоренностей. Размещение сети КС выбрано с учетом существующей инфраструктуры управления НС и из условий надежного решения задач траекторных измерений для всей орбитальной группировки.

Такая сеть КС обеспечивает закладку на спутники системы 1 раз/сут вы­сокоточных эфемерид и временных поправок (возможна закладка 2 раз/сут).

В случае выхода из строя одной из станций возможна ее равноценная замена другой, так как сеть КС обладает достаточной избыточностью и в наихудшей ситуации работу системы может обеспечивать ЦУС и одна станция, однако интенсивность ее работы будет очень высокой.

При планировании работы КС на сутки определяются основные и резервные станции для проведения сеансов измерений с необходимой избыточ­ностью. Контрольные станции имеют тройное резервирование по аппаратуре (один комплект рабочий, второй — в резерве, третий — профилактические ра­боты). Коэффициент готовности средств ПКУ в сеансе измерений и закладки информации на борт спутника близок к единице.

Описанная сеть КС отличается от аналогичной структуры СРНС GPS тем, что обеспечивает высокое качество управления орбитальной группиров­кой только с национальной территории. КС ГЛОНАСС могут использоваться для обеспечения функционирования других космических средств.

Эфемеридное обеспечение

Эфемеридное обеспечение поддерживается комплексом технических и программных средств, выполняющих радиоконтроль орбит спутников с нескольких наземных КС, обработку результатов траекторных измерений и рас эфемеридной информации (ЭИ), передаваемой далее с помощью загрузочных станций на спутник.

Высокая точность расчета эфемерид обеспечивается соответствующей точностью измерительных средств, внесением поправок на выявленные методических траекторных измерений, но и накапливаемых за недельный срок. При этом дальномерные данные, получаемые от станций слежения за спутниками, периодически калибруются, что обеспечивает высокое качество траекторных измерений в системе ГЛОНАСС.

Предполагается, что такие традиционные методы управления будут использоваться до 2000 г. В дальнейшем будет осуществляться переход на новые технологии, включающие межспутниковые угломерно-дальномерные измерения, что обеспечит качественный скачок в координатно-временном обеспечении потребителей.

Исторические сведения

Развитие отечественной спутниковой радионавигационной системы (СРНС) ГЛОНАСС имеет уже практически сорокалетнюю историю, начало которой положено, как чаще всего считают, запуском 4 октября 1957 г. в Со­ветском Союзе первого в истории человечества искусственного спутника Зем­ли (ИСЗ). Измерения доплеровского сдвига частоты передатчика этого ИСЗ на пункте наблюдения с известными координатами позволили определить параметры движения этого спутника.

Обратная задача была очевидной: по измерениям того же доплеровского сдвига при известных координатах ИСЗ найти координаты пункта наблюдения.

Научные основы низкоорбитальных СРНС были существенно развиты в процессе выполнения исследований по теме "Спутник" (1958—1959 гг.). Основное внимание при этом уделялось вопросам повышения точности навигационных определений, обеспечения глобальности, круглосуточности применения и независимости от погодных условий.

Проведенные работы позволили перейти в 1963 г. к опытно-конструк­торским работам над первой отечественной низкоорбитальной системой, по­лучившей в дальнейшем название "Цикада".

В 1979 г. была сдана в эксплуатацию навигационная система 1-го поко­ления "Цикада" в составе 4-х навигационных спутников (НС), выведенных на круговые орбиты высотой 1000км, наклонением 83° и равномерным распреде­лением плоскостей орбит вдоль экватора. Она позволяет потребителю в сред­нем через каждые полтора-два часа входить в радиоконтакт с одним из НС и определять плановые координаты своего места при продолжительности нави­гационного сеанса до 5... 6 мин.

В ходе испытаний было установлено, что основной вклад в погрешность навигационных определений вносят погрешности передаваемых спутниками собственных эфемерид, которые определяются и закладываются на спутники средствами наземного комплекса управления. Поэтому наряду с совершенст­вованием бортовых систем спутника и корабельной приемоиндикаторной ап­паратуры, разработчиками системы серьезное внимание было уделено вопро­сам повышения точности определения и прогнозирования параметров орбит навигационных спутников.

Была отработана специальная схема проведения измерений параметров орбит средствами наземно-комплексного управления, разработаны методики прогнозирования, учитывающие все гармоники в разложении геопотенциала.

Проведены работы по уточнению координат измерительных средств и вычислению коэффициентов согласующей модели геопотенциала, предназначенной специ­ально для определения и прогнозирования параметров навигационных орбит. В результате точность передаваемых в составе навигационного сигнала собст­венных эфемерид была повышена практически на порядок и составляет в на­стоящее время на интервале суточного прогноза величину» 70... 80 м, а среднеквадратическая погрешность определения морскими судами своего ме­стоположения уменьшилась до 80... 100 м.

Для оснащения широкого класса морских потребителей разработаны и серийно изготавливаются комплектации приемоиндикаторной аппаратуры "Шхуна" и "Челн". В дальнейшем спутники системы "Цикада" были дооборудованы прием­ной измерительной аппаратурой обнаружения терпящих бедствие объектов, которые оснащаются специальными радиобуями, излучающими сигналы бедст­вия на частотах 121 и 406 Мгц. Эти сигналы принимаются спутниками систе­мы "Цикада" и ретранслируются на специальные наземные станции, где про­изводится вычисление точных координат аварийных объектов (судов, самоле­тов и др.).

Дооснащенные аппаратурой обнаружения терпящих бедствие спутники "Цикада" образуют системы "Коспас". Совместно с американо-франко-ка­надской системой "Сарсат" они образуют единую службу поиска и спасения, на счету которой уже несколько тысяч спасенных жизней.

Успешная эксплуатация низкоорбитальных спутниковых навигацион­ных систем морскими потребителями привлекла широкое внимание к спутни­ковой навигации. Возникла необходимость создания универсальной навига­ционной системы, удовлетворяющей требованиям всех потенциальных потре­бителей: авиации, морского флота, наземных транспортных средств и косми­ческих кораблей.

Выполнить требования всех указанных классов потребителей низкоорби­тальные системы в силу принципов, заложенных в основу их построения, не могли. Перспективная спутниковая навигационная система должна обеспечи­вать потребителю в любой момент времени возможность определять три про­странственные координаты, вектор скорости и точное время. Для получения потребителей трех пространственных координат беззапросным методом требу­ется проведение измерений навигационного параметра не менее чем до четы­рех спутников, при этом одновременно с тремя координатами местоположения потребитель определяет и расхождение собственных часов относительно шка­лы времени спутниковой системы.

Исходя из принципа навигационных определений, выбрана структура спутниковой системы, которая обеспечивает одновременную в любой момент времени радиовидимость потребителей, находящимся в любой точке Земли, не менее четырех спутников, при минимальной общем их количестве в системе. Это обстоятельство ограничило высоту орбиты навигационных спутников 20 тыс. км, (дальнейшее увеличение высоты не ведет к расширению зоны радиообзора, а, следовательно, и к уменьшению необходимого количества спутников в системе). Для гарантированной видимости потребителем не менее четырех спутников, их количество в системе должно составлять 18, однако оно было увеличено до 24-х с целью повышения точности определения собственных координат и скорости потребителя путем предоставления ему возможности выбора из числа видимых спутников четверки, обеспечивающей наивысшую точность.

Одной из центральных проблем создания спутниковой системы, обеспечивающей беззапросные навигационные определения одновременно по нескольким спутникам, является проблема взаимной синхронизации спутниковых шкал времени с точностью до миллиардных долей секунды (наносекуд), поскольку рассинхронизация излучаемых спутниками навигационных сигналов в 10 нс вызывает дополнительную погрешность в определении местоположения потребителя до 10... 15 м.

Решение задачи высокоточной синхронизации бортовых шкал времен потребовало установки на спутниках высокостабильных бортовых цезиевых стандартов частоты с относительной нестабильностью 1•1013 и наземного водородного стандарта с относительной нестабильностью 1×1014, а также создания наземных средств сличения шкал с погрешностью 3... 5 нс.

С помощью этих средств и специального математического обеспечения производится определение расхождений бортовых шкал времени с наземной шкалой и их прогнозирование для каждого спутника системы. Результат прогноза в виде поправок к спутниковым часам относительно наземных закладываются на соответствующие спутники и передаются ими в составе цифровой информации навигационного сигнала. Потребителями таким образом устанавливается единая шкала времени. Расхождение этой шкалы с наземной шкалой времени системы не превышает 15... 20 нс.

Второй проблемой создания высокоорбитальной навигационной систем является высокоточное определение и прогнозирование параметров орбит навигационных спутников.

Достижение необходимой точности эфемерид навигационных спутнике потребовало проведения большого объема работ по учету факторов второго порядка малости, таких как световое давление, неравномерность вращения Земли и движение ее полюсов, а также исключение действия на спутник в полете реактивных сил, вызванных негерметичностью двигательных установок газоотделением материалов покрытий.

Для экспериментального определения параметров геопотенциала на орбиты навигационных спутников были запущены два пассивных ИЗС "Эталон ("Космос-1989" и "Космос-2024"), предназначенных для измерения параметров их движения высокоточными квантово-оптическими измерительным средствами. Благодаря этим работам достигнутая в настоящее время точность эфемерид навигационных спутников при прогнозе на 30 ч составляет: вдоль орбиты — 20 м; по бинормали к орбите — 10 м; по высоте 5 м (СКО).

Летные испытания высокоорбитальной отечественной навигационной

системы, получившей название ГЛОНАСС, были начаты в октябре 1982 г. за­пуском спутника "Космос-1413"..."

В 1995 г. было завершено развертывание СРНС ГЛОНАСС до ее штат­ного состава (24 НС). В настоящее время предпринимаются большие усилия по поддержанию группировки.

Разработаны самолетная аппаратура АСН-16, СНС-85, АСН-21, наземная аппаратура АСН-15 (РИРВ), морская аппаратура "Шкипер" и "Репер" (РНИИ КП) и др.

Основным заказчиком и ответственным за испытания и управление сис­темами являются Военно-космические силы РФ.

В рассматриваемый период времени в США также проведены интенсив­ные разработки СРНС. В 1958 г. в рамках создания первого поколения атом­ных ракетных подводных лодок "Полярис" была создана система "Транзит" (аналог СРНС "Цикада"), введенная в строй в 1964 г.

В начале 70-х годов начаты работы по созданию СРНС второго поколе­ния — ОР5/"Навстар" (аналога отечественной системы ГЛОНАСС). Спутни­ковая радионавигационная система GPS полностью развернута в 1993 г.

В соответствии с Постановлением Правительства РФ № 237 от 7 марта 1995 г. основными направлениями дальнейших работ являются:

· модернизация СРНС ГЛОНАСС на основе модернизированного спутника ГЛОНАСС-М с повышенным гарантийным сроком службы (пять лет«и более вместо трех в настоящее время) и более высокими техническими характери­стиками, что позволит повысить надежность и точность системы в целом;

· внедрение технологии спутниковой навигации в отечественную эконо­мику, науку и технику, а также создание нового поколения навигационной аппаратуры потребителей, станций дифференциальных поправок и контроля целостности;

· разработка и реализация концепции российской широкозонной дифференциальной подсистемы на базе инфраструктуры Военно-космических сил ее взаимодействия с ведомственными региональными и локальными дифференциальными подсистемами, находящимися как на территории России, так и за рубежом;

· развитие сотрудничества с различными международными и зарубежными организациями и фирмами в области расширения использования возможностей навигационной системы ГЛОНАСС для широкого круга потребителей;

· решение вопросов, связанных с использованием совместных навигационных полей систем ГЛОНАСС и GPS в интересах широкого круга потребителей мирового сообщества: поиск единых подходов к предоставлен услуг мировому сообществу со стороны космических навигационных систем, согласование опорных систем координат и системных шкал времени; выработка мер по недопущению использования возможностей космических навигационных систем в интересах террористических режимов и группировок.

Работы в указанных направлениях ведутся в соответствии с требованиями, выдвигаемыми различными потребителями (воздушными, морскими речными судами, наземными и космическими средствами, топогеодезическими, землеустроительными и другими службами).

Структура спутниковых радионавигационных систем

Структура, способы функционирования и требуемые характеристики подсистем СРНС во многом зависят от заданного качества навигационного обеспечения и выбранной концепции навигационных измерений. Для достижения таких важнейших качеств, как непрерывность и высокая точ­ность навигационных определений, в глобальной рабочей зоне в составе со­временной СРНС типа ГЛОНАСС и GPS функционируют три основные под­системы (рис. 1):

Ø космических аппаратов (ПКА), состоящая из навигационных ИСЗ (в дальнейшем ее называем сетью навигационных спутников (НС) или космиче­ским сегментом);

Ø контроля и управления (ПКУ) (наземный командно-измерительный комплекс (КИК) или сегмент управления);

Ø аппаратура потребителей (АП) СРНС (приемоиндикаторы (ПИ) или сег­мент потребителей). Разнообразие видов приемоиндикаторов СРНС обеспечи­вает потребности наземных, морских, авиационных и космических (в преде­лах ближнего космоса) потребителей.

Основной операцией, выполняемой в СРНС с помощью этих сегментов, является определение пространственных координат местоположения потреби­телей и времени, т. е. пространственно-временных координат (ПВК). Эту опе­рацию осуществляют в соответствии с концепцией независимой навигации, предусматривающей вычисление искомых навигационных параметров непо­средственно в аппаратуре потребителя. В рамках этой концепции в СРНС выбран позиционный способ определения местоположения потребите­лей на основе беззапросных (пассивных) дальномерных измерений по сигна­лам нескольких навигационных искусственных спутников Земли с известны­ми координатами.

Выбор концепции независимой навигации и использование беззапрос­ных измерений обеспечили возможность достижения неограниченной пропу­скной способности СРНС. По сравнению с зависимой навигацией, не преду­сматривающей процедуры вычислений ПВК в ПИ СРНС, произошло усложне­ние аппаратуры потребителей. Однако современные достижения в области технологий сделали возможной реализацию таких подходов при решении про­блемы навигационных определений в СРНС.

Высокая точность определения местоположения потребителей обуслов­лена многими факторами, включая взаимное расположение спутников и пара­метры их навигационных сигналов. Структура космического сегмента обеспе­чивает для потребителя постоянную видимость требуемого числа спутников.

В настоящее время считается целесообразным введение в состав СРНС региональных дополнительных систем, обеспечивающих реализацию наиболее строгих требований потребителей. Эти структуры позволяют существенно повысить точность обсерваций, обнаруживать и идентифицировать нарушения в режимах работы СРНС, недопустимое ухудшение качества ее функциониро­вания и своевременно предупреждать об этом потребителей, т. е. они могут осуществлять контроль целостности системы и поддерживать режим диффе­ренциальных измерений.


Поделиться с друзьями:

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.018 с.