Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
Топ:
Когда производится ограждение поезда, остановившегося на перегоне: Во всех случаях немедленно должно быть ограждено место препятствия для движения поездов на смежном пути двухпутного...
Эволюция кровеносной системы позвоночных животных: Биологическая эволюция – необратимый процесс исторического развития живой природы...
Характеристика АТП и сварочно-жестяницкого участка: Транспорт в настоящее время является одной из важнейших отраслей народного...
Интересное:
Лечение прогрессирующих форм рака: Одним из наиболее важных достижений экспериментальной химиотерапии опухолей, начатой в 60-х и реализованной в 70-х годах, является...
Уполаживание и террасирование склонов: Если глубина оврага более 5 м необходимо устройство берм. Варианты использования оврагов для градостроительных целей...
Как мы говорим и как мы слушаем: общение можно сравнить с огромным зонтиком, под которым скрыто все...
Дисциплины:
2017-05-14 | 856 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Под дистанционным зондированием (ДЗ) подразумевается получение информации о земной поверхности (включая расположенные на ней объекты) без непосредственного контакта с ней, путем регистрации приходящего от нее электромагнитного излучения. Таким образом, дистанционное зондирование – косвенный метод получения информации о земной поверхности, и для извлечения этой содержательной информации из исходных данных требуются специальные методы обработки (дешифрирования) данных ДЗ (ДДЗ). Эти методы реализованы в системах обработки изображений.
Существует несколько видов съемки, использующих специфические свойства излучений с различными длинами волн. При проведении географического анализа, помимо собственно ДДЗ, обязательно используются пространственные данных из других источников – цифровые топографические и тематические карты, схемы инфраструктуры, внешние базы данных. Снимки позволяют не только выявлять различные явления и объекты, но и оценивать их количественно.
Существуют различные классификации ДДЗ. Прежде всего, они различаются по физическим принципам их получения. Для этого могут использоваться электромагнитные (ЭМВ) и звуковые волны. Хотя ДЗ почти всегда ассоциируется с использованием ЭМВ, в некоторых приложениях (например, сканирующая эхолокация дна водоемов) звуковые волны просто незаменимы. По своим свойствам эхолокационные данные очень похожи на радиолокационные, поэтому мы не будем рассматривать их отдельно.
Регистрироваться может собственное излучение объектов и отраженное излучение других источников. Этими источниками могут быть Солнце (см. рисунок 1.1) или сама съемочная аппаратура. В последнем случае используется когерентное излучение (радары, сонары и лазеры), что позволяет регистрировать не только интенсивность излучения, но также и его поляризацию, фазу и доплеровское смещение, что дает дополнительную информацию. Понятно, что работа самоизлучающих (активных) сенсоров не зависит от времени дня, но зато требует значительных затрат энергии.
Съемочная аппаратура может размещаться на различных платформах. Платформой может быть космический летательный аппарат (КЛА, спутник), самолет, вертолет и даже простая тренога. В последнем случае мы имеем дело с наземной съемкой боковых сторон объектов (например, для архитектурных и реставрационных задач) или наклонной съемкой с естественных или искусственных высотных объектов. На одной платформе может размещаться несколько съемочных устройств, называемых инструментами или сенсорами, что обычно для КЛА. Понятно, что чем дальше находится платформа с сенсором от изучаемого объекта, тем больший охват и меньшую детализацию будут иметь получаемые изображения [3].
|
Рисунок 1.1 - Энергетический спектр Солнца
и полосы поглощения атмосферы Земли
Можно выделить три основных пассивных метода дистанционного зондирования озонного слоя Земли: эмиссионный метод, основанный на измерениях собственного излучения Земли и атмосферы, метод обратного рассеяния, базирующийся на измерениях рассеянного атмосферой ультрафиолетового солнечного излучения, и абсорбционный метод, связанный с измерением прозрачности атмосферы в направлении ИСЗ – источник излучения (Солнце или звезды).
Измерение излучения в этих методах осуществляется в надир или под различными углами к надиру. По тому, как направлена линия наблюдения аппаратуры относительно надира, измерения условно разделяются на лимбовые и надирные.
Схемы этих измерений приведены на рисунке 1.2. В случае надирной схемы уходящее излучение атмосферы измеряется в вертикальном направлении или под различными углами к вертикали. При лимбовых измерениях линия наблюдения направлена на горизонт Земли. В связи с большой протяженностью трассы луча в атмосфере эти измерения позволяют определять, наряду с озоном, содержание других малых газовых компонент в ее верхних слоях. [4]
Рисунок 1.2 - Схемы зондирования озонного слоя Земли с ИСЗ
1 – надирные измерения УФ рассеянного излучения Солнца (метод обратного рассеяния);
2 – измерения УФ-излучения Солнца, рассеянного под углами к надиру (метод обратного рассеяния);
3 – лимбовые измерения солнечного излучения (метод прозрачности);
4 – надирные измерения собственного излучения атмосферы (эмиссионный метод);
5 – лимбовые измерения собственного излучения атмосферы (эмиссионный метод);
6 – лимбовые измерения УФ рассеянного излучения [4].
|
Наконец, ДДЗ могут классифицироваться по различными видам разрешения и охвата, по типу носителя данных (фотографические и цифровые), по принципу работы сенсора (фотоэффект, пироэффект и др.), по способу формирования (развертки) изображения, по специальным возможностям (стереорежим, сложная геометрия съемки), по типу орбиты, с которой производится съемка, и т.д.
Возможность обнаружить и измерить то или иное явление, объект или процесс определяется, в первую очередь, разрешающей способностью сенсора. ДДЗ характеризуются несколькими видами разрешений: пространственным, спектральным, радиометрическим и временным.
Пространственное разрешение характеризует размер наименьших объектов, различимых на изображении. В зависимости от решаемых задач, могут использоваться данные низкого (более 100 м), среднего (10 – 100 м) и высокого (менее 10 м) разрешений. Снимки низкого пространственного разрешения являются обзорными и позволяют одномоментно охватывать значительные территории – вплоть до целого полушария. Такие данные используются чаще всего в метеорологии, при мониторинге лесных пожаров и других масштабных природных бедствий. Снимки среднего пространственного разрешения на сегодня – основной источник данных для мониторинга природной среды. Спутники со съемочной аппаратурой, работающей в этом диапазоне пространственных разрешений, запускались и запускаются многими странами – Россией, США, Францией и др., что обеспечивает постоянство и непрерывность наблюдения. Съемка высокого разрешения из космоса до недавнего времени велась почти исключительно в интересах военной разведки, а с воздуха – с целью топографического картографирования. Однако, сегодня уже есть несколько коммерчески доступных космических сенсоров высокого разрешения, позволяющих проводить пространственный анализ с большей точностью или уточнять результаты анализа при среднем или низком разрешении.
Спектральное разрешение указывает на то, какие участки спектра электромагнитных волн (ЭМВ) регистрируются сенсором. При анализе природной среды, например, для экологического мониторинга, этот параметр – наиболее важный. Условно весь диапазон длин волн, используемых в ДЗЗ, можно поделить на три участка – радиоволны, тепловое излучение, ИК-излучение и видимый свет. Такое деление обусловлено различием взаимодействия электромагнитных волн и земной поверхности, различием в процессах, определяющих отражение и излучение ЭМВ.
Наиболее часто используемый диапазон ЭМВ – видимый свет и примыкающее к нему коротковолновое ИК-излучение. В этом диапазоне отражаемая солнечная радиация несет в себе информацию, главным образом, о химическом составе поверхности. Подобно тому, как человеческий глаз различает вещества по цвету, сенсор дистанционного зондирования фиксирует "цвет" в более широком понимании этого слова. В то время как человеческий глаз регистрирует лишь три участка (зоны) электромагнитного спектра, современные сенсоры способны различать десятки и сотни таких зон, что позволяет надежно выявлять объекты и явления по их заранее известным спектрограммам. Для многих практических задач такая детальность нужна не всегда. Если интересующие объекты известны заранее, можно выбрать небольшое число спектральных зон, в которых они будут наиболее заметны. Так, например, ближний ИК-диапазон очень эффективен в оценке состояния растительности, определении степени ее угнетения. Для большинства приложений достаточный объем информации дает многозональная съемка со спутников. Для успешного проведения съемки в этом диапазоне длин волн необходимы солнечный свет и ясная погода. См. рисунок 1.3.
|
Обычно оптическая съемка ведется либо сразу во всем видимом диапазоне (панхроматическая), либо в нескольких более узких зонах спектра (многозональная). При прочих равных условиях, панхроматические снимки обладают более высоким пространственным разрешением. Они наиболее пригодны для топографических задач и для уточнения границ объектов, выделяемых на многозональных снимках меньшего пространственного разрешения.
Рисунок 1.3 - Факторы, влияющие на попадание отраженной солнечной радиации на сенсоры спутника
Тепловое ИК-излучение несет информацию, в основном, о температуре поверхности. Помимо прямого определения температурных режимов видимых объектов и явлений (как природных, так и искусственных), тепловые снимки позволяют косвенно выявлять то, что скрыто под землей – подземные реки, трубопроводы и т.п. Поскольку тепловое излучение создается самими объектами, для получения снимков не требуется солнечный свет (он даже, скорее, мешает). Такие снимки позволяют отслеживать динамику лесных пожаров, нефтяные и газовые факелы, процессы подземной эрозии.
Сантиметровый диапазон радиоволн используется для радарной съемки. Важнейшее преимущество снимков этого класса – в их всепогодности. Поскольку радар регистрирует собственное, отраженное земной поверхностью, излучение, для его работы не требуется солнечный свет. Кроме того, радиоволны этого диапазона свободно проходят через сплошную облачность и даже способны проникать на некоторую глубину в почву. Отражение сантиметровых радиоволн от поверхности определяется ее текстурой ("шероховатостью") и наличием на ней всевозможных пленок. Так, например, радары способны фиксировать наличие нефтяной пленки толщиной 50 мкм и более на поверхности водоемов даже при значительном волнении. Еще одной особенностью радарной съемки является ее высокая чувствительность к влажности почвы, что важно и для сельскохозяйственных, и для экологических приложений. В принципе, радарная съемка с самолетов способна обнаруживать подземные объекты, например, трубопроводы и утечки из них.
|
Радиометрическое разрешение определяет диапазон различимых на снимке яркостей. Большинство сенсоров обладают радиометрическим разрешением 6 или 8 бит, что наиболее близко к мгновенному динамическому диапазону зрения человека. Но есть сенсоры и с более высоким радиометрическим разрешением, позволяющим различать больше деталей на очень ярких или очень темных областях снимка. Это важно в случаях съемки объектов, находящихся в тени, а также когда на снимке одновременно находятся большие водные поверхности и суша.
Наконец, временное разрешение определяет, с какой периодичностью один и тот же сенсор может снимать некоторый участок земной поверхности. Этот параметр весьма важен для мониторинга чрезвычайных ситуаций и других быстро развивающихся явлений. Большинство спутников (точнее, их семейств) обеспечивают повторную съемку через несколько дней, некоторые – через несколько часов. В критических случаях для ежедневного наблюдения могут использоваться снимки с различных спутников, однако, нужно иметь в виду, что заказ и доставка сами по себе могут потребовать немалого времени. Одним из вариантов решения является приобретение приемной станции, позволяющей принимать данные непосредственно со спутника. Для отслеживания изменений на какой-либо территории важна также возможность получения архивных (ретроспективных) снимков [3].
|
|
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...
Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...
Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!