Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...
Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...
Топ:
Оснащения врачебно-сестринской бригады.
Теоретическая значимость работы: Описание теоретической значимости (ценности) результатов исследования должно присутствовать во введении...
Проблема типологии научных революций: Глобальные научные революции и типы научной рациональности...
Интересное:
Финансовый рынок и его значение в управлении денежными потоками на современном этапе: любому предприятию для расширения производства и увеличения прибыли нужны...
Распространение рака на другие отдаленные от желудка органы: Характерных симптомов рака желудка не существует. Выраженные симптомы появляются, когда опухоль...
Лечение прогрессирующих форм рака: Одним из наиболее важных достижений экспериментальной химиотерапии опухолей, начатой в 60-х и реализованной в 70-х годах, является...
Дисциплины:
2017-05-13 | 2739 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Формализация – создание языка наук. Формализация – особый подход. Язык науки должен иметь однозначные соответствия; все понятия должны быть общепринятыми и однозначными; формальная знаковая система. + лекции
Одна из важных закономерностей развития науки - усиление и нарастание сложности и абстрактности научного знания, углубление и расширение процессов математизации науки как базы новых технологий, обеспечивающих совершенствование форм взаимодействия в научном сообществе.
Роль математики в развитии познания была осознана довольно давно. Уже в античности была создана геометрия Евклида, сформулирована теорема Пифагора и т.п. А Платон у входа в свою знаменитую Академию начертал девиз: "Негеометр - да не войдет". В Новое время один из основателей экспериментального естествознания Г. Галилей говорил о том, что тот, кто хочет решать вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Поскольку, согласно Галилею, "книга Вселенной написана на языке математики", то эта книга доступна пониманию для того, кто знает язык математики И. Кант считал, что в любом частном учении о природе можно найти науки в собственном смысле лишь столько, сколько в ней имеется математики. Иначе говоря, учение о природе будет содержать науку в собственном смысле лишь в той мере, в какой может быть применена в нем математика.
История познания и его современный уровень служат убедительным подтверждением "непостижимой эффективности" математики, которая стала действенным инструментом познания мира. Она была и остается превосходным методом исследования многообразных явлений, вплоть до самых сложных - социальных, духовных. Сегодня становится все более очевидным, что математика - не "свободный экскурс в пустоту", что она работает не в "чистом эфире человеческого разума", а руководствуется в конечном счете данными чувственного опыта и эксперимента, служит для того, чтобы многое сообщать об объектах окружающего мира. "Математику можно представить как своего рода хранилище математических структур. Некоторые аспекты физической или эмпирической реальности удивительно точно соответствуют этим структурам, словно последние "подогнаны" под них" [1]. Как это ни парадоксально, но именно столь далекие от реальности математические абстракции позволили человеку проникнуть в самые глубокие горизонты материи, выведать самые сокровенные ее тайны, разобраться в сложных и разнообразных процессах объективной действительности.
|
Сущность процесса математизации, собственно, и заключается в применении количественных понятий и формальных методов математики к качественно разнообразному содержанию частных наук. Последние должны быть достаточно развитыми, зрелыми в теоретическом отношении, осознать в достаточной мере единство качественного многообразия изучаемых ими явлений. Именно этим обстоятельством прежде всего определяются возможности математизации данной науки.
Чем сложнее данное явление, чем более высокой форме движения материи оно принадлежит, тем труднее оно поддается изучению количественными методами, точной математической обработке законов своего движения. Так, в современной аналитической химии существует более 400 методов (вариантов, модификаций) количественного анализа. Однако невозможно математически точно выразить рост сознательности человека, степень развития его умственных способностей, эстетические достоинства художественных произведений и т.п.
Применение математических методов в науке и технике за последнее время значительно расширилось, углубилось, проникло в считавшиеся ранее недоступными сферы. Эффективность применения этих методов зависит как от специфики предмета данной науки, степени ее теоретической зрелости, так и от совершенствования самого математического аппарата, позволяющего отобразить все более сложные свойства и закономерности качественно многообразных явлений. Можно без преувеличения сказать, что нация, стремящаяся быть на уровне высших достижений цивилизации, с необходимостью должна овладеть количественными математическими методами и не только в целях повышения эффективности научных исследований, но и для улучшения и совершенствования всей повседневной жизни людей.
|
Вместе с тем нельзя не заметить, что успехи математизации внушают порой желание "испещрить" свое сочинение цифрами и формулами (нередко без надобности), чтобы придать ему "солидность и научность". На недопустимость этой псевдонаучной затеи обращал внимание еще Гегель. Считая количество лишь одной ступенью развития идеи, он справедливо предупреждал о недопустимости абсолютизации этой одной (хотя и очень важной) ступени, о чрезмерном и необоснованном преувеличении роли и значении формально-математических методов познания, фетишизации языково-символической формы выражения мысли.
Это хорошо понимают выдающиеся творцы современной науки. Так, А. Пуанкаре отмечал: "Многие полагают, что математику можно свести к правилам формальной логики... Это лишь обманчивая иллюзия" [1]. Рассматривая проблему формы и содержания, В. Гейзенберг, в частности, писал: "Математика - это форма, в которой мы выражаем наше понимание природы, но не содержание. Когда в современной науке переоценивают формальный элемент, совершают ошибку и притом очень важную" [2]. Он считал, что физические проблемы никогда нельзя разрешить исходя из "чистой математики", и в этой связи разграничивал два направления работы (и соответственно - два метода) в теоретической физике - математическое и понятийное, концептуальное, философское. Если первое направление описывает природные процессы посредством математического формализма, то второе "заботится" прежде всего о "прояснении понятий", позволяющих в конечном счете описывать природные процессы.
История познания показывает, что практически в каждой частной науке на определенном этапе ее развития начинается (иногда весьма бурный) процесс математизации. Особенно ярко это проявилось в развитии естественных и технических наук (характерный пример - создание новых "математизированных" разделов теоретической физики). Но этот процесс захватывает и науки социально-гуманитарные - экономическую теорию, историю, социологию, социальную психологию и др., и чем дальше, тем больше. Например, в настоящее время психология стоит на пороге нового этапа развития - создания специализированного математического аппарата для описания психических явлений и связанного с ними поведения человека. В психологии все чаще формулируются задачи, требующие не простого применения существующего математического аппарата, но и создания нового. В современной психологии сформировалась и развивается особая научная дисциплина - математическая психология.
|
Применение количественных методов становится все более широким в исторической науке, где благодаря этому достигнуты заметные успехи. Возникла даже особая научная дисциплина - клиометрия (буквально - измерение истории), в которой математические методы выступают главным средством изучения истории. Вместе с тем надо иметь в виду, что как бы широко математические методы ни использовались в истории, они для нее остаются только вспомогательными методами, но не главными, определяющими.
В настоящее время одним из основных инструментов математизации научно-технического прогресса становится математическое моделирование. Его сущность и главное преимущество состоит в замене исходного объекта соответствующей математической моделью и в дальнейшем ее изучении (экспериментированию с нею) на ЭВМ с помощью вычислительно-логических алгоритмов.
Творцы науки убеждены, что роль математики в частных науках будет возрастать по мере их развития. "Кроме того, - отмечает академик А. Б. Мигдал, - в будущем в математике возникнут новые структуры, которые откроют новые возможности формализовать не только естественные науки, но в какой-то мере и искусство" [1]. Самое важное, по его мнению, здесь в том, что математика позволяет сформулировать интуитивные идеи и гипотезы в форме, допускающей количественную проверку.
|
|
Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...
Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...
Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!