Рентгеновское излучение Солнца — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Рентгеновское излучение Солнца

2019-08-03 45
Рентгеновское излучение Солнца 0.00 из 5.00 0 оценок
Заказать работу

Роль рентгеновского диапазона как нового информативного источника знаний о Вселенной была давно осознана астрофизиками. Еще до начала прямых наблюдений жесткое рентгеновское излучение было обнаружено по измерениям степени ионизации слоя D ионосферы. Земная атмосфера поглощает коротковолновую область спектра солнечного электромагнитного излучения, где находятся ультрафиолетовые, рентгеновские и гамма-лучи. Все они, кроме близкого ультрафиолета, доступны наблюдениям только с ракет и искусственных спутников, оснащенных специальной аппаратурой. Поэтому рентгеновская астрономия начала интенсивно развиваться сразу же с появлением внеатмосферных методов.

Первые прямые измерения солнечного рентгеновского потока были проведены в США в конце 50-х годов группой Дж. Уинклера и Л. Петерсона при помощи регистраторов - простых сцинтилляционных счетчиков, установленных на воздушных шарах. Впоследствии такие же регистраторы, измерявшие излучение от всего Солнца в широком спектральном диапазоне, были установлены на ракетах и спутниках. Но настоящее развитие рентгеновская астрономия получила тогда, когда были созданы мощные ракеты и большие космические станции, способные нести на борту достаточно сложные и высокотехнологичные телескопы, имеющие пространственное и спектральное разрешение.

В области физики Солнца первый такой прорыв связан с запуском в 1973 году американской орбитальной космической станции "Skylab", оснащенной солнечным рентгеновским телескопом. Наблюдения проводились подготовленными астронавтами, среди которых был физик Эдвард Гибсон, автор монографии "Спокойное Солнце". Солнечные рентгенограммы снимались на фотопленку, и отснятые материалы возвращались на Землю для обработки (Рис. 1).

Наблюдения на "Skylab" дали довольно много открытий: были обнаружены корональные дыры - участки короны с пониженным свечением в рентгеновском диапазоне, характеризуемые открытой геометрией магнитных силовых линий, разомкнутых в межпланетное пространство; были открыты рентгеновские яркие точки, соответствующие мельчайшим (так называемым эфемерным) активным областям; были выявлены корональные транзиенты - гигантские выбросы массы из короны и многое другое.

Рис. 1. Солнце в рентгеновских лучах (космическая лаборатория "Skylab"). Ярко светится горячий газ солнечной короны, особенно заметный над активными областями Солнца. Рис. 2. Изображение горячей (1,5 x 106 К) солнечной короны, полученное в ультрафиолетовых лучах обсерваторией SOHO (Solar and Heliospheric Observatory), запущенной в декабре 1995 года, то есть в период минимума солнечной активности. Многочисленные яркие области - вспышки в короне - видны по всему диску Солнца. Совокупность вспышечных корональных петель на краю диска (справа) отражает эффект присутствия магнитного поля, силовые линии которого формируют анфиладу арок, образуя своеобразный туннель. Эти и другие данные, полученные SOHO, показывают, что Солнце непредвиденно активно даже в течение спокойной фазы 11-летнего цикла (из материалов NASA Resources for Educators).

Следующий этап был связан с программой Года солнечного максимума (1971-1981 годы) и работавшими в тот период орбитальными станциями "Solar Maximum Mission (SMM)" (США, Европа) и "Hinotori" (Япония). Основной упор был сделан на спектроскопию вспышек в рентгеновской области спектра. Было открыто явление хромосферного испарения вещества в солнечной вспышке, за которым следует его выброс в корону с огромными скоростями, что проявляется в рентгеновских линиях. Были обнаружены вспышки в короне - увеличение яркости в рентгеновских и ультрафиолетовых лучах (Рис. 2), не сопровождаемое одновременным ростом яркости в хромосфере.

Последний, завершившийся этап связан с программой "Вспышки 22-го солнечного цикла" и полетом орбитальной обсерватории "Yohkon" (Япония, США), оснащенной рентгеновскими телескопами для получения изображения Солнца в мягком и жестком диапазонах (Рис. 3).

Рис. 3. Серия изображений Солнца, полученных обсерваторией "Yohkon". Видны временные вариации мягкого рентгеновского излучения. Наблюдения выполнялись на телескопе, регистрирующем кванты в области ~10 A с энергией ~1 кэВ (из материалов NASA Resources for Educators).

Телескоп мягкого рентгена впервые обеспечил возможность проследить динамику корональных петель. Эти петли в обычном, не возбужденном вспышкой состоянии представляют собой слабоконтрастные образования, которые не были доступны наблюдениям ранее. 2 ноября 1992 года удалось впервые пронаблюдать процесс образования петельной туннельной структуры, вершина которой периодически вытягивалась вверх и вновь замыкалась. Процесс оказался аналогичен процессу вытягивания хвоста магнитосферы Земли в ходе магнитной суббури. Удалось также проследить изменения петельной структуры активной области во время мощной вспышки (Рис. 4).

Рис. 4. Девять изображений рентгеновской (1 кэВ, 10 A) вспышки 2 ноября 1992 года, полученных в различные моменты времени обсерваторией "Yohkon" (из статьи J. Seely et al.: Proc. Kofu Sympos. NRO. Report No 360, July 1994). Лимб Солнца хорошо виден на последних двух снимках. Первое изображение с хорошей экспозицией получено через бериллиевый фильтр в 03h07m30s вблизи максимума вспышки. Самой замечательной особенностью в полной последовательности изображений является яркая эмиссионная область на вершине петли. Вид этой вспышки большой длительности изменялся очень медленно: к 10h13 m36s яркая эмиссионная область состояла, возможно, из трех петель, каждая из которых оставалась яркой на вершине. По мере роста и изменения структуры петли наиболее яркая область оставалась по-прежнему на вершине петли и даже в 21h41m00s все еще различима. Это означает, что энергия была запасена в вершине петли и механизм нагрева действовал в течение периода порядка десятков часов. В течение этого периода видимая высота этой яркой области над солнечным лимбом увеличилась от 27000 до 90000 км.

Этот процесс взрывного типа идет, конечно, быстро и требует не только высокого временного разрешения, которое ранее было недоступно, но и большого динамического диапазона приемника излучения, так как он идет одновременно в ярких и слабосветящихся структурах. Происходит не только вытягивание петель высоко в корону над активной областью, но и сложная структурная перестройка в нижней короне, характер которой не выявляется однозначно при одноаспектных (то есть с одного направления) наблюдениях.

Некоторые неоднозначности в описании системы вспышечных петель можно снять при стереоскопических многоаспектных наблюдениях, и здесь мы логически подходим к обоснованию необходимости наблюдений Солнца с двух и более направлений, то есть наблюдений с определенной стереоскопической базой. Поскольку корона является оптически тонким объектом, то изображения, получаемые с одним инструментом, то есть из одной какой-либо точки пространства, представляют собой интеграл по лучу зрения. Результирующая двумерная картина неизбежно содержит неоднозначность по третьему измерению. Эта неоднозначность может быть устранена применением томографии, то есть путем наблюдений с нескольких направлений (в идеале не менее четырех под углом 45° друг к другу) и последующим восстановлением трехмерного изображения. Принципы солнечной томографии заимствуются из медицинской томографии, основы которой хорошо известны.

Все изложенное позволяет сделать вывод, что рождение новых методов внеатмосферных наблюдений Солнца в рентгеновском диапазоне и интенсивные наблюдения в рамках международных кооперативных наблюдательных программ привели к ряду открытий в физике Солнца. Созданные к настоящему времени комплексы рентгеновских телескопов могут быть использованы в многоаспектных наблюдениях Солнца, призванных дать принципиально новую информацию о пространственной структуре быстропротекающих процессов в солнечной короне.


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.