Речной гидрохимический сток. — КиберПедия 

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Речной гидрохимический сток.

2019-08-02 186
Речной гидрохимический сток. 0.00 из 5.00 0 оценок
Заказать работу

Рис. 4

 Температура воды в реке ниже выходов гидротерм на истоке из озера в августе 2000 г. поднялась до 24o, и она приняла облик экзотического термального водотока. Русло окрасилось выпавшими гидроокислами в ярко оранжевый цвет, бурно развились колонии термофильных водорослей - пеестрых возле горячих источников и изумрудно-зелееных, в виде длинных тонких нитей, в русле. 

Река Карымская собирает воду всех термоминеральных источников обеих кальдер. Периодические наблюдения за расходом и составом воды в реке на фиксированных створах дают возможность количественно оценить и сопоставить гидрохимический сток кальдер до и за 5 лет после событий 19966 г. Наблюдения велись на треех створах: Верхнем (ВС) на истоке реки, среднем (СС) - на входе в кальдеру Карымская, и нижнем (НС) - ниже Термальной котловины (см. рис. 1). Верхний створ показывает химическихй сток из озера, формирующийся при участии гидротерм I -- VI групп, СС - то же с приращением за счеет гидротерм VII группы, и "финишный" НС - включает вынос водами Термальной котловины. Химические анализы вод приведены в таблице 1. Наблюдения в 1984 г. сделаны в период весеннего паводка. Данные остальных лет получены в июле - августе, т. е. в меженный период и могут быть приняты за среднегодовые. По этим данным легко посчитать "ионный сток" из озера и на двух отрезках реки. Результаты таких расчетоврасчетов для макрокомпонентов показаны на рис. 4. Размер заштрихованных прямоугольников отвечает выносу вещества в единицу времени. Концентрации компонентов даны в эквивалентной форме, что позволяет получить представление о составе растворенныхрастворенных солей. Диаграммы отражают интегральную картину гидрохимических процессов и содержат большой объеем информации. Отметим только главное. Во все годы вынос вещества в кальдере Карымская кратно превосходит вынос в кальдере Академии Наук. Новые гидротермы в истоках реки выносят больше хлорида натрия, характерного компонента парогидротерм, чем все источники на берегах озера. В экстремальном 1996 году в кальдере Карымскойая вынос Na был в 9 раз, SO4 в 4, Cl в 2 и Mg в 4 раза больше, чем в кальдере Академии наук, где шло подводное извержение. Особенно велик был вынос сульфата натрия, по-видимому, за счетсчет вымывания продуктов ионно-обменных реакций из тонкодисперсных отложений грязевых потоков. В последующие годы идетидет относительная стабилизация гидрохимического стока.

Обсуждение

В недрах кальдер Академии Наук и Карымскаяой длительное время, функционирует геотермальная система. Еее возраст, судя по датам фреато магматических взрывов в кальдере Академии Наук, превышает 6500 лет [2 ]. В кальдере Академии Наук до последнего времени существовало два очага разгрузки гидротерм: явный, в мааре вулкана Академии Наук, и скрытый, у северного берега. В 1996 г. возник третий, самый мощный, в истоке реки Карымская. В кальдере Карымская на пути восходящего движения высокотемпературных гидротерм возник промежуточный водонапорный резервуар. В неем, в результате взаимодействия глубинных и инфильтрационных вод с метасоматитами, формируются углекислые термоминеральные воды, разгружающиеся в виде мощных нарзанных источников. Все очаги разгрузки гидротерм, как и сама геотермальная система, связаны с вулканотектоническимивулканотектоническими структурами субмеридионального грабена. Через систему трещин этого грабена, которые играют роль основных каналов миграции гидротерм, осуществляется гидравлическая связь между резервуарами термальных вод кальдер Академии Наук и Карымскойая. Эти резервуары можно рассматривать как автономные гидротермальные системы, объединеенные общим источником теплового питания в единую геотермальную систему. Источникоами нагрева гидротерм служат тепло и высокотемпературные флюиды приповерхностных магматических очагов, обусловивших возникновение кальдер, или менее глубинный и более активный очаг или система очагов, образовавшихся в недрах грабена. В обоих случаях, трещины растяжения, формирующие грабен, являются и каналами для подъеема высокотемпературных теплоносителей, нагревающих современные гидротермы.

Сейсмические и вулканические события 1996 г. оказали сильнейшее воздействие на геотермальную систему. В свою очередь, массы подвижных высокотемпературных газо-водных флюидов и колоссальная тепловая энергия, аккумулированные на относительно небольшой глубине в геотермальных резервуарах, не могламогли не повлиять на подготовку и ход этих событий 

Химический и газовый состав вод несетнесет большой объемобъем информации о процессах, протекающих в недрах, и может служить чувствительным индикатором состояния гидротермальной системы. В таблицах 1, 3, 4,собраны наиболее представительные анализы термоминеральных вод и газов кальдер Академии Наук и Крымскойая за 1996 -2000 гг. и некоторые предыдущие годы, отражающие гидрохимические различия между группами источников и временные изменения внутри групп. Они уже комментировались при описании термопроявлений. Отчеетливо выделяются три основных химических типа гидротерм: 1) - углекисло-азотные, хлоридно-натриевые щелочные (рН>9), высококремнистые (H4SiO4>400 мг/л) источников Академии Наук (см. табл. 3); 2) - азотно-углекислые, сульфатно-хлоридные, натриевые слабо щелочные и нейтральные, высококремнистые (H4SiO4>300 мг/л) новых источников (см. табл. 4)); 3) - углекислые, хлоридно-гидрокарбонатно-сульфатные, натриево-магниевые, высококремнистые (H4SiO4>200 мг/л), слабокислые (рН 6 - 7) Карымских источников.

Рис. 5

 Воды Карымского озера также превратились в минеральные, типа "фумарольных терм": кислые (рН<3,3), сульфатные со сложным катионным составом. Они постепенно нейтрализуются (в 2000 г. рН 4,7) и видоизменяются в сторону увеличения концентрации хлорида натрия и снижения сульфатности (см. табл. 1, NN 3 - 7).

На диаграмме эволюции химического состава (рис. 5) хорошо видны сходства и отличия вод основных групп термальных источников и изменения их макрокомпонентного состава за 4 года. 

Очевидно, что за период с 1938 года значимых изменений в составе вод основного участка разгрузки гидротерм в кальдере Академии Наук (гр. I) не произошло. Изменялись лишь воды периферийных групп (II - IV). На сейсмотектонические события 1996 г. источники отреагировали только резким увеличением дебита. По-видимому, каких либо качественных преобразований в глубинном тепловом и флюидном питании здесь не происходит. 

Важнейшим гидрогеохимическим последствием катаклизма 1996 года надо считать возникновение мощного очага разгрузки высокотемпературных термоминеральных вод на северном берегу озера и в истоках реки Карымская. Новые сульфатно--хлоридные, натриевые гидротермы отличаются по составу от всех существовавших здесь ранее (см табл. 3 и 4). Воды источников V, VI и VII групп различаются между собой не по гидрохимическому типу, а по величине минерализации, т. е. по степени смешения с пресными водами. Их состав к 2000 г. ещее не стабилизировался, особенно в VII, самой большой и неоднородной группе, и ещее рано говорить о тенденциях перемен (см. рис. 5). По большим, выше, чем в источниках Академии Наук, концентрациям хлоридов натрия в гидротермах VII группы можно заключить, что в них наиболее высоко присутствие флюида высокотемпературного геотермального резервуара. По гидрохимическим данным именно здесь, а не в эксплозивной воронке, вскрылись основные каналы разгрузки глубинных вод высокотемпературной геотермальной системы. Благодаря высокой минерализации и очень большим дебитам, новые гидротермы играют главную роль в процессах выноса и переотложения вещества в геохимической системе кальдеры Академии Наук.

В кальдере Карымская гидрохимические условия разгрузки гидротерм сложнее. Из-за приповерхностного смешения с инфильтрационными водами появляются "разбавленные" источники. Сильнейшее влияние на конфигурацию участков разгрузки оказали грязевые потоки катастрофических паводков, залившие большую часть термального поля и, сейсмические процессы, напротив, раскрывшие новые водовыводящие трещины. Несмотря на это, гидрохимический тип воды основных источников уже 35 лет остаеется прежним, а наблюдаемые незначительные перемены являются скорее колебаниями, чем изменениями. Небольшое, ~10%, увеличение минерализации отмечалось только в 1997 г. Следовательно, извержение вулкана Карымскогоий, у подножия которого находятся источники, не отразилось на составе гидротерм. Вода высокодебитных источников на трещинах, открывшихся у восточной границы термального поля, гидрокарбонатная и менее кислая с высоким содержанием магния. Наблюдаемые здесь высокие концентрации Не (до 0,2%) являются признаком разломных зон глубокого заложения.

Карымские термоминеральные водыводы, безусловнобезусловно, являются лечебными. Они относятся к группе редко встречающихся углекислых высококремнистых магниевых вод, очень ценных в бальнеологическом отношении. Они содержат в повышенных концентрациях и биологически активные микрокомпоненты: Fe, As, Sb, Sr и др. Благоприятное сочетание состава и комфортной температуры с очень высокими дебитами (>700 л/с) делает месторождение термоминеральных вод кальдеры Карымская уникальным. Это самое большое на Камчатке и в России месторождение углекислых термоминеральных вод.

Механизм единовременной инъекции в озеро почти 70 тысяч тонн серы заслуживает специального обсуждения. Самым простым объяснением этого явления может быть привнос в виде SO2 эруптивными газами. В большинстве опубликованных анализов высокотемпературных вулканических и теоретически рассчитанных "магматических" газов весовая концентрация соединений серы (S+SO2+SO3+H2S) составляет n . 10-4 и, очень редко, 10-3. Более 0,95 массы газов приходится на Н2О, остальное - СО2, Н2, галогеноводороды и т. п. [15, 22]. Если эруптивные газы извержения 1996 г. имели аналогичный состав и также более чем на 95% состояли из Н2О, то вместе с 7.107 кг серы в озеро должно было поступить (сконденсироваться) n.1010 -1011 кг водяного пара(107 -108м3 конденсата), что сопоставимо с объемом озера (4,6.108м3). Тепловая энергия этого количества пара, принимая минимально возмможную энтальпию ~2,5.106 Дж/кг, будет составлять n.1016 -1017Дж. С.М. Фазлуллин оценил поглощенную озером энергию в 1016 Дж [24]. Казалось бы, что эта величина близка к вычисленной нами по геохимическим данным, но, в отличие от нашей, она "по умолчанию" включает тепло, отданное твердыми продуктами извержения. При сопоставлении оценок это тепло надо приплюсовать и к нашим цифрам и тогда разница далеко выходит за пределы одного порядка. Не решенной остаеется и проблема водной составляющей (конденсата) гипотетического эруптивного газа: из его объеема n.107 - 108 м3 только n .106 м3 можно было бы "списать" на эруптивные облака (1,3 .106 м3 [14]) и катастрофический паводок (1,1.104 м3 [24]). Следовательно, либо концентрация серы в газе была в десятки раз больше принятой нами, либо привнос серы одновременно осуществлялся и другим агентом. 

Одновременно с 70 тыс. тонн серы в 1996 году в озеро поступило 20,4 тыс. тонн Cl-. Это в ~30 раз больше, чем в предыдущие годы, и в ~20, чем в последующие (см. табл. 2, рис. 2). Концентрации хлора в магматических газах обычно на 1 - 2 порядка ниже концентрации серы, поэтому его вынос в газовой фазе в больших количествах мало вероятен. Для транспортировки такого количества хлорида в растворе потребовалось бы (2- 4)107м3 воды (0,1 - 0,2 объемаобъема озера), аналогичной по составу парогидротермам Академии Наук. 

Приходится предполагать, что при извержении в озере в транспортировке серы и хлора участвовала какая то высококонцентрированная субстанция, возможно, высоко минерализованный флюид глубинных околомагматических зон геотермальной системы.

Тепловая мощность является самым объективным показателем состояния гидротермальной системы, а тепло остаеется единственны бесспорно глубинным компонентом гидротерм. В таблице 8 показаны итоговые величины выноса тепла естественными термопроявлениями Карымско-Академической геотермальной системы. Цифры округлены до мегаватт, поскольку точность измерений не велика. Тем не менее, масштабы и тенденции изменений для всех очагов разгрузки проявляются весьма отчеетливо. 

Основной вынос тепла (~85%) раньше происходил в кальдере Карымская. В этой кальдере гидротермальная система отреагировала на извержение и землетрясение несущественным, на 20%, увеличением выноса тепла с последующим сокращением почти до начального уровня в 2000 г. И это несмотря на продолжающееся извержение вулкана Карымскогоий, от кратера которого до источников меньше 3 км. При этом кардинально перераспределились участки разгрузки: большая часть тепла выносится теперь водами через систему трещин, вскрывшихся у восточной границы термального поля. Гидротермические и гидрохимические показатели позволяют уверенно утверждать, что на данном этапе развития магмовыводящая система вулкана не оказывает заметного влияния на состояние гидротермальной системы в кальдере Карымская и, следовательно, не является для неее поставщиком тепла и вещества. 

В Кальдере Академии Наук в 1996 г. действующие источники резким скачком вдвое нарастили и продолжают увеличивать вынос тепла. Одновременно у северного берега озера и в истоках реки Карымская феноменальные сейсмо-вулканические явления привели к возникновению новых мощных очагов разгрузки парогидротерм. В результате общая тепловая мощность гидротерм в кальдере Академии Наук увеличилась в 5 раз, с 21 до 113 МВт, и продолжает расти. За 4 года источники Академии Наук усилились на 7 МВт, а новые источники - на 28 МВт. Повсюду, кроме кратера Токарева наблюдается рост температуры выходов и количества кипящих источников. Карымско-Академическую геотермальную систему можно было и раньше относить к"крупным" (157 МВт)1. После событий 1996 г. еее общая тепловая мощность стабилизировалась на новом высоком уровне - 290 МВт. Напомним естественную тепловую мощность крупнейших гидротермальных систем Камчатки: Узонская - 270, Кошелевская - 314, Мутновская - 130 МВт. [3, 77]. 

Выводы

1. В кальдерах Академии Наук и Карымскаяий в течениие тысяч лет функционирует мощная высокотемпературная геотермальная система. Эксплозивное извержение произошло при внедрении магмы в еее геотермальный резервуар. Огромная масса газо-водного флюида и его тепловая энергия, аккумулированная в геотермальном очаге на относительно небольшой глубине, неизбежно повлияли на подготовку и ход извержения. Извержение 1996 года правильнее относить к типу гидротермально-магматических, а не фреатомагматических.

2. Судя по соотношению количеств серы, хлора и тепловой энергии, поступивших в Карымское озеро во время подводного извержения, в эксплозивном процессе участвовал высокоминерализованный теплоноситель с энтальпией ниже, чем у водяного пара.

3. Извержение вулкана Карымскогийо не повлияло на состав и тепловую мощность источников у его подножия. Следовательно, промежуточный магматический очаг и магмовыводящая система вулкана не связаны непосредственно с гидротермальной системой и не являются для неее поставщиками тепла и вещества.

4. Феноменальным гидрогеологическим результатом сейсмо-вулканических событий 1996 г. стало появление нового мощного очага разгрузки высокотемпературных гидротерм в истоках реки Карымская.

5. В результате событий 1996 года суммарная тепловая мощность геотермальной системы почти удвоилась, при этом вынос тепла в кальдере Карымскойая остался на прежнем уровне, а в кальдере Академии Наук возрос в 7 раз, в основном, за счеет новых источников на северном берегу озера и в истоках реки Карымская. По естественному выносу тепла геотермальная система кальдер Академии наук и Карымская относится к категории крупных и стоит в одном ряду с самыми мощными месторождениями парогидротерм Камчатки.

6. Во все годы, включая экстремальный 1996, вынос вещества (макрокомпонентов минерализации вод) гидротермами кальдеры Карымскойая был в 2 - 4 раза выше, чем в кальдере Академии Наук.

7. В кальдере Карымская заключено крупнейшее на Камчатке и в России месторождение ценных и редких по составу углекислых термоминеральных вод, заслуживающее специального бальнеологического исследования.

Авторы глубоко признательны дирекции Природных парков Камчатки и всем остальным, кто способствовал, или хотя бы не мешал, проведению исследований на КВЦ.

Список литературы

Вакин Е.А., Кирсанов И.Т., Кирсанова Т.П. Термальные поля и горячие источники Мутновского вулканического массива // Гидротермальные системы и термальные поля Камчатки. Владивосток: ДВНЦ АН СССР. 1976. C. 85-114.Белоусов А.Б. Комментарий к статье О.А. Брайцевой "Фреатомагматическое извержение в озере Карымское (Восточная Камчатка) приблизительно 6500 14С -лет назад и импульсы подачи базальтового вещества в районе Карымского вулкана в голоцене" // Вулканология и сейсмология. 1998. N2. C. 107-109.

Брайцева О.А. Фреатомагматическое извержение в озере Карымское (Восточная Камчатка) приблизительно 6500 14С- лет назад и импульсы подачи базальтового вещества в районе Карымского вулкана в голоцене // Вулканология и сейсмология. 1997. N5. C. 138 - 134.

Вакин Е.А., Пилипенко Г.Ф. Мутновский геотермальный район на Камчатке // Изучение и использование геотермальных ресурсов в вулканических областях. М.: Наука, 1979. 267 С. 36 - -46.

Вакин Е.А., Пилипенко Г.Ф., Гидротермы Карымского озера после подводного извержения 1996г // Вулканология и сейсмология. 1998. N 2.Пономарев В.В. и др. Возникновение новой группы термальных источников на вулкане Алаид (Северные Курилы) // Гидротермальный процесс в областях тектоно-магматической активности. М.: Наука, 1977. C. 73-84. С. 3 - 27.

Влодавец В.И. Вулканы Карымской группы // Тр. Камчатской вулканол. Станции., 1947. Вып. 3. C. 3-46.

Вулканический центр: строение, динамика, вещество (Карымская структура). М.: Недра., 1974. 260 с.

Гидротермальные системы и термальные поля Камчатки. Владивосток: ДВНЦ АН СССР,, 1976. 282 с.

Гриб Е.Н. Петрология продуктов извержения 2 - 3 января 1996 г. в кальдере Академии Наук. // Вулканология и сейсмология. 1997. N5. C. 71 - -96.

Иванов Б.В. Извержение Карымского вулкана в 1962 - -1965 гг. и вулканы Карымской группы. М.: Наука,, 1970. 135 с.

Иванов Б.В. Современная гидротермальная деятельность в районе вулканов Карымской группы Гидротермальные минералообразующие растворы областей активного вулканизма. Новосибирск: Наука,, 1974. C. 32-37.

Иванов В.В. Основные закономерности распространения и формирования термальных вод Дальнего Востока // Вопросы формирования и распространения минеральных вод СССР. М.: Минздрав СССР,, 1960. C. 171-262.

Леонов В.Л. Поверхностные разрывы, связанные с землетрясением и извержениями, произошедшими в Карымском вулканическом центре 1 - -2 января 1996 г. // Вулканология и сейсмология. 1997. N5. C. 113 -- 129.

Магуськин Н.А., Федотов С.А.,Левин. В.Е., Бахтиаров В.Ф. Деформация земной поверхности в связи с сейсмической и вулканической активностью в Карымском вулканическом центре в январе 1996 г. // Вулканология и сейсмология. 1997. N5. C. 97 - -112.

Муравьеев Я. Д., Федотов С.А. Будников В.А. и др. Вулканическая деятельность в Карымском центре в 1996г.: вершинное извержение Карымского вулкана и фреатомагматическое извержение в кальдере Академии Наук // Вулканология и сейсмология. 1997. N5. C. 38 - -70.

Мцуо С. О происхождении вулканических газов.// Гохимия современных поствулканических процессов. М.: Мир, 1965. С. 61 - -77.

Пилипенко Г.Ф. Парогидротермы кальдеры Узон // Гидротермальные системы и термальные поля Камчатки. Владивосток: ДВНЦ АН СССР, 1976. С. 237 -- 266.

Пилипенко Г.Ф. Гидротермы Карымского вулканического центра на Камчатке // Вулканология и сейсмология. 1989. N 6. C. 85-101.

Попруженко С.В., Апрелков С.Е., Ольшанская О.Н. Восточно-Камчатский вулканический пояс в свете гефизических данных // Вулканология и сейсмология. 1987. N2. С. 14.-.24.

Вулканология и сейсмология. 1984. N 5. C. 49-60. Селянгин О.Б. Петрогенезис базальт-дацитовой серии в связи с эволюцией вулкано-структур // М.:Наука., 1987. 148 с.

Сугробов В.М., Сугробова Н.Г. Особенности разгрузки высокотемпературных подземных вод в Долине гейзеров // Вопросы географии Камчатки. 1989. N10. С. 81 --89.

Сугробов В.М, Чирков А.М. О распределении радона в современных гидротермальных системах Камчатки // Гидротермальное минералообразующие растворы областей активного вулканизма. Новосибирск: Наука., 1974. С. 22 - -24.

Уайт Д.Е. Уоринг Г.А. Вулканические эманации // Гохимия современных поствулканических процессов. М.: Мир., 1965. С. 9- - 21.

Ушаков С.В., Фазлуллин С.М. Морфометрические характеристики Карымского озера в связи с подводным извержением. // Вулканология и сейсмология. 1997. N5. C. 130 - -137.

Фазлуллин С.М. Ушаков С.В. Шувалов Р.А. и др. Подводное извержение в кальдере Академии Наук (Камчатка) и его последствия: гидрологические, гидрохимические и гидробиологические исследования // Вулканология и сейсмология. 2000. N4. С. 19 - -32.

Федотов С.А. Об извержениях в кальдере Академии Наук и Карымского вулкана на Камчатке в 1996г., их изучении и механизме // Вулканология и сейсмология. 1997. N5. C.3 --37.

Фирстов П.П. Чирков А.М. Радон в спонтанном газе термального источника вулкана Карымского (1966 - -1975 гг.) // Бюл. вулканол. станций. 1978. N54. С. 35 --40.

 


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.051 с.