Уравнения. Алгебраические уравнения — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Уравнения. Алгебраические уравнения

2019-08-04 153
Уравнения. Алгебраические уравнения 0.00 из 5.00 0 оценок
Заказать работу

Основные определения

В алгебре рассматриваются два вида равенств – тождества и уравнения.

Тождество – это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв [1]). Для записи тождества наряду со знаком  также используется знак .

Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, входящие в уравнение, по условию задачи могут быть неравноправны: одни могут принимать все свои допустимые значения (их называют параметрами или коэффициентами уравнения и обычно обозначают первыми буквами латинского алфавита: , ,  ... – или теми же буквами, снабженными индексами: , ,... или , ,...); другие, значения которых требуется отыскать, называют неизвестными (их обычно обозначают последними буквами латинского алфавита: , , ,... – или теми же буквами, снабженными индексами: , ,... или , ,...).

В общем виде уравнение может быть записано так:

(, ,..., ) .

В зависимости от числа неизвестных уравнение называют уравнением с одним, двумя и т. д. неизвестными.

Значение неизвестных, обращающие уравнение в тождество, называют решениями уравнения.

Решить уравнение – это значит найти множество его решений или доказать, что решений нет. В зависимости от вида уравнения множество решений уравнения может быть бесконечным, конечным и пустым.

Если все решения уравнения являются решениями уравнения , то говорят, что уравнение  есть следствие уравнения , и пишут 

.

Два уравнения

и

называют эквивалентными, если каждое из них является следствие другого, и пишут

.

Таким образом, два уравнения считаются эквивалентными, если множество решений этих уравнений совпадают.

Уравнение  считают эквивалентным двум (или нескольким) уравнениям , , если множество решений уравнения  совпадает с объединением множеств решений уравнений , .

Н е к о т о р ы е э к в и в а л е н т н ы е у р а в н е н и я:

Уравнение эквивалентно уравнению , рассматриваемому на множестве допустимых значений искходного уравнения.

Уравнение  эквивалентно уравнению , рассматриваемому на множестве допустимых значений искходного уравнения.

 эквивалентно двум уравнениям  и .

Уравнение  эквивалентно уравнению .

Уравнение  при нечетном n эквивалентно уравнению , а при четном n эквивалентно двум уравнениям и .

Алгебраическим уравнением называется уравнение вида

,

где  – многочлен n-й степени от одной или нескольких переменных.

       Алгебраическим уравнением с одним неизвестным называется уравнение, сводящееся к уравнению вида

+ +... + + ,

где n – неотрицательное целое число; коэффициенты многочлена , , ,..., ,  называются коэффициентами (или параметрами) уравнения и считаются заданными; х называется неизвестным и является искомым. Число n называется степенью уравнения.

       Значения неизвестного х, обращающие алгебраическое уравнение в тождество, называются корнями (реже решениями) алгебраического уравнения.

       Есть несколько видов уравнений, которые решаются по готовым формулам. Это линейное и квадратное уравнения, а также уравнения вида F(х) , где F – одна из стандартных функций (степенная или показательная функция, логарифм, синус, косинус, тангенс или котангенс). Такие уравнения считаются простейшими. Так же существуют формулы и для кубического уравнения, но его к простейшим не относят.

       Так вот, главная задача при решении любого уравнения – свести его к простейшим.

Все ниже перечисленные уравнения имеют так же и свое графическое решение, которое заключается в том, чтобы представить левую и правую части уравнения как две одинаковые функции от неизвестного. Затем строится график сначала одной функции, а затем другой и точка(и) пересечения двух графиков даст решение(я) исходного уравнения. Примеры графического решения всех уравнений даны в приложении.

Линейное уравнение

Линейным уравнением называется уравнение первой степени.

                                                            ,                                                            (1)

где a и b – некоторые действительные числа.

       Линейное уравнение всегда имеет единственный корень , который находится следующим образом.

Прибавляя к обеим частям уравнения (1) число , получаем уравнение

                                                              ,                                                              (2)

эквивалентное уравнению (1). Разделив обе части уравнения (2) на величину , получаем корень уравнения (1):

.

Квадратное уравнение

Алгебраическое уравнение второй степени.

                                                       ,                                                       (3)

где , ,  – некоторые действительные числа, называется квадратным уравнением. Если , то квадратное уравнение (3) называется приведенным.

Корни квадратного уравнения вычисляются по формуле

,

Выражение  называется дискриминантом квадратного уравнения.

При этом:

если , то уравнение имеет два различных действительных корня;

если , то уравнение имеет один действительный корень кратности 2;

если , то уравнение действительных корней не имеет, а имеет два комплексно сопряженных корня:

,                              ,

Частными видами квадратного уравнения (3) являются:

1) Приведенное квадратное уравнение (в случае, если ), которое обычно записывается в виде

.

Корни приведенного квадратного уравнения вычисляются по формуле

                                               .                                               (4)

       Эту формулу называют формулой Виета – по имени французского математика конца XVI в., внесшего значительный вклад в становление алгебраической символики.

2) Квадратное уравнение с четным вторым коэффициентом, которое обычно записывается в виде

 (  - целое число).

Корни этого квадратного уравнения удобно вычислять по формуле

                                                 .                                                 (5)

       Формулы (4) и (5) являются частными видами формулы для вычисления корней полного квадратного уравнения.

       Корни приведенного квадратного уравнения

связаны с его коэффициентами Формулами Виета

,

.

В случае, если приведенное квадратное уравнение имеет действительные корни, формулы Виета позволяют судить как о знаках, так и об относительной величине корней квадратного уравнения, а именно:

если , , то оба корня отрицательны;

если , , то оба корня положительны;

если , , то уравнение имеет корни разных знаков, причем отрицательный корень по абсолютной величине больше положительного;

если , , уравнение имеет корни разных знаков, причем отрицательный корень по абсолютной величине меньше положительного корня.

 

Перепишем еще раз квадратное уравнение

                                                                                                                (6)

и покажем еще один способ как можно вывести корни квадратного уравнения (6) через его коэффициенты и свободный член. Если

                                                           + + ,                                                           (7)

 то корни квадратного уравнения вычисляются по формуле

,

откуда

,      .

которая может быть получена в результате следующих преобразований исходного уравнения, а так же с учетом формулы (7).

,

Заметим, что , поэтому

,

откуда

.

,

но , из формулы (7) поэтому окончательно

.

Если положить, что + , то

,

Заметим, что , поэтому

,

откуда

,

но ,  поэтому окончательно

.

и

.

Двучленные уравнения

Уравнения n-й степени вида

                                                                                                                      (8)

называется двучленным уравнением. При  и  заменой [2])

,

где  - арифметическое значение корня, уравнение (8) приводится к уравнению

,

которое и будет далее рассматриваться.

Двучленное уравнение  при нечетном n имеет один действительный корень . В множестве комплексных чисел это уравнение имеет n корней (из которых один действительный и  комплексных):

              (  0, 1, 2,...,  ).                      (9)

       Двучленное уравнение  при четном n в множестве действительных чисел имеет два корня , а в множестве комплексных чисел n корней, вычисляемых по формуле (9).

Двучленное уравнение  при четном n имеет один действительный корней , а в множестве комплексных чисел  корней, вычисляемых по формуле

(  0, 1, 2,...,  ).                      (10)

Двучленное уравнение  при четном n имеет действительный корней не имеет. В множестве комплексных чисел уравнение имеет  корней, вычисляемых по формуле (10).

       Приведем краткую сводку множеств корней двучленного уравнения для некоторых конкретных значений n.

       1) ().

       Уравнение имеет два действительных корня .

       2)        ().

Уравнение имеет один дествительный корень  и два комплексных корня

.

       3)       ().

Уравнение имеет два действительных корния  и два комплексных корня .

       4)       ().

       Уравнение действительных корней не имеет. Комплексные корни: .

       5)        ().

Уравнение имеет один дествительный корень  и два комплексных корня

.

       6)       ().

Уравнение действительных корней не имеет. Комплексные корни:

, .

Кубические уравнения

Если квадратные уравнения умели решать еще математики Вавилонии и Древней Индии, то кубические, т.е. уравнения вида

, где ,

оказались "крепким орешком". В конце XV в. профессор математики в университетах Рима и Милана Лука Пачоли в своем знаменитом учебнике "Сумма знаний по арифметике, геометрии, отношениям и пропорциональности" задачу о нахождении общего метода для решения кубических уравнений ставил в один ряд с задачей о квадратуре круга. И все же усилиями итальянских алгебраистов такой метод вскоре был найден.

 

Начнем с упрощения

Если кубическое уравнение общего вида

, где ,

разделить на , то коэффициент при  станет равен 1. Поэтому в дальнейшем будем исходить из уравнения

                                                .                                                (11)

Так же как в основе решения квадратного уравнения лежит формула квадрата суммы, решение кубического уравнения опирается на формулу куба суммы:

Чтобы не путаться в коэффициентах, заменим здесь  на  и перегруппируем слагаемые:

                                      .                                      (12)

Мы видим, что надлежащим выбором , а именно взяв , можно добиться того, что правая часть этой формулы будет отличаться от левой части уравнения (11) только коэффициентом при  и свободным членом. Сложим уравнения (11) и (12) и приведем подобные:

.

Если здесь сделать замену , получим кубическое уравнение относительно  без члена с :

.

Итак, мы показали, что в кубическом уравнении (11) с помощью подходящей подстановки можно избавиться от члена, содержащего квадрат неизвестного. Поэтому теперь будем решать уравнение вида

                                                       .                                                       (13)

 

Формула Кардано

Давайте еще раз обратимся к формуле куба суммы, но запишем ее иначе:

.

Сравните эту запись с уравнением (13) и попробуйте установить связь между ними. Даже с подсказкой это непросто. Надо отдать должное математикам эпохи Возрождения, решившим кубическое уравнение, не владея буквенной символикой. Подставим в нашу формулу :

, или

.

Теперь уже ясно: для того, чтобы найти корень уравнения (13), достаточно решить систему уравнений

 или

и взять в качестве  сумму  и . Заменой ,  эта система приводится к совсем простому виду:

Дальше можно действовать по-разному, но все "дороги" приведут к одному и тому же квадратному уравнению. Например, согласно теореме Виета, сумма корней приведенного квадратного уравнения равна коэффициенту при  со знаком минус, а произведение – свободному члену. Отсюда следует, что  и  - корни уравнения

.

Выпишем эти корни:

Переменные  и  равны кубическим корням из  и , а искомое решение кубического уравнения (13) – сумма этих корней:

.

Эта формула известная как формула Кардано.

 

Тригонометрическое решение

подстановкой  приводится к "неполному" виду

                    , , .                    (14)

Корни , , "неполного" кубичного уравнения (14) равны

, ,

где

, ,

.

Пусть "неполное" кубичное уравнение (14) действительно.

       а) Если  ("неприводимый" случай), то  и

,

,

где

.

(b) Если , , то

,     ,

где

,            .

(с) Если , , то

,              ,

где

,      .

Во всех случаях берется действительное значение кубичного корня.

 

Биквадратное уравнение

Алгебраическое уравнение четвертой степени.

,

где a, b, c – некоторые действительные числа, называется биквадратным уравнением. Заменой  уравнение сводится к квадратному уравнению  с последующим решением двух двучленных уравнений  и  (  и  - корни соответствующего квадратного уравнения).

Если  и , то биквадратное уравнение имеет четыре действительных корня:

,                 .

Если ,  [3]), то биквадратное уравнение имеет два действительных корня  и мнимых сопряженных корня:

.

Если  и , то биквадратное уравнение имеет четыре чисто мнимых попарно сопряженных корня:

,          .

 

Уравнения четвертой степени

Метод решения уравнений четвертой степени нашел в XVI в. Лудовико Феррари, ученик Джероламо Кардано. Он так и называется – метод Феррари.

       Как и при решении кубического и квадратного уравнений, в уравнении четвертой степени

можно избавиться от члена  подстановкой . Поэтому будем считать, что коэффициент при кубе неизвестного равен нулю:

.

       Идея Феррари состояла в том, чтобы представить уравнение в виде , где левая часть – квадрат выражения , а правая часть – квадрат линейного уравнения  от , коэффициенты которого зависят от . После этого останется решить два квадратных уравнения:  и . Конечно, такое представление возможно только при специальном выборе параметра . Удобно взять  в виде , тогда уравнение перепишется так:

                         .                         (15)

Правая часть этого уравнения – квадратный трехчлен от . Полным квадратом он будет тогда, когда его дискриминант равен нулю, т.е.

, или

 .

Это уравнение называется резольвентным (т.е. "разрешающим"). Относительно  оно кубическое, и формула Кардано позволяет найти какой-нибудь его корень . При  правая часть уравнения (15) принимает вид

,

а само уравнение сводится к двум квадратным:

.

Их корни и дают все решения исходного уравнения.

       Решим для примера уравнение

.

       Здесь удобнее будет воспользоваться не готовыми формулами, а самой идеей решения. Перепишем уравнение в виде

и добавим к обеим частям выражение , чтобы в левой части образовался полный квадрат:

.

Теперь приравняем к нулю дискриминант правой части уравнения:

,

или, после упрощения,

.

Один из корней полученного уравнения можно угадать, перебрав делители свободного члена: . После подстановки этого значения получим уравнение

,

откуда . Корни образовавшихся квадратных уравнений -  и . Разумеется, в общем случае могут получиться и комплексные корни.

 

Решение Декарта-Эйлера

подстановкой  приводится к "неполному" виду

                                                 .                                                 (16)

Корни , , ,  "неполного" уравнения четвертой степени (16) равны одному из выражений

,

в которых сочетания знаков выбираются так, чтобы удовлетворялось условие

,

причем ,  и  - корни кубичного уравнения

.

 

Уравнения высоких степеней

Разрешимость в радикалах

Формула корней квадратного уравнения известна с незапамятных времен, а в XVI в. итальянские алгебраисты решили в радикалах уравнения третьей и четвертой степеней. Таким образом, было установлено, что корни любого уравнения не выше четвертой степени выражаются через коэффициенты уравнения формулой, в которой используются только четыре арифметические операции (сложение, вычитание, умножение, деление) и извлечение корней степени, не превышающей степень уравнения. Более того, все уравнения данной степени  () можно "обслужить" одной общей формулой. При подстановке в нее коэффициентов уравнения получим все корни – и действительные, и комплексные.

       После этого естественно возник вопрос: а есть ли похожие общие формулы для решения уравнений пятой степени и выше? Ответ на него смог найти норвежский математик Нильс Хенрик Абель в начале XIX в. Чуть раньше этот результат был указан, но недостаточно обоснован итальянцем Паоло Руффини. Теорема Абеля-Руффини звучит так:

Общее уравнение степени  при  неразрешимо в радикалах.

      

Таким образом, общей формулы, применимой ко всем уравнениям данной степени , не существует. Однако это не значит, что невозможно решить в радикалах те или иные частные виды уравнений высоких степеней. Сам Абель нашел такое решение для широкого класса уравнений произвольно высокой <


Поделиться с друзьями:

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.172 с.