Конденсаторная батарея, оборудованная коммутационной аппаратурой, средствами защиты и управления, образует конденсаторную установку (КУ). — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Конденсаторная батарея, оборудованная коммутационной аппаратурой, средствами защиты и управления, образует конденсаторную установку (КУ).

2019-08-03 251
Конденсаторная батарея, оборудованная коммутационной аппаратурой, средствами защиты и управления, образует конденсаторную установку (КУ). 0.00 из 5.00 0 оценок
Заказать работу

Мощность, генерируемая КБ, при ее заданной емкости С пропорциональна квадрату приложенного напряжения и его частоте QКБ = U2wС.

Рисунок 2

Поэтому нерегулируемые КБ обладают отрицательным регулирующим эффектом, что, в отличие от синхронных компенсаторов, является их недостатком. Это значит, что мощность КБ снижается со снижением приложенного напряжения, тогда как по условиям режима эту мощность необходимо увеличивать.

Регулирующий эффект КУ по реактивной мощности показан на рис. 2, а, а КУ, состоящий из нескольких секций, — на рис. 2, б. Как видно из рис. 2, а, при снижении напряжения от Uном до Umin реактивная мощность снижается пропорционально квадрату напряжения от Qном до Qmin.

Преодоление этого недостатка находят в формировании КБ из нескольких секций, каждая из которых, управляемая регулятором напряжения и/или мощности, подключается к сети через свой выключатель, наращивая таким образом емкость батареи в целом. Это и позволяет увеличивать суммарную мощность КБ при снижении напряжения. Так мощность КУ при снижении напряжения возрастает ступенями Q1, Q1 + Q2, Q1 + Q2 + Q3, как показано на рис. 2, б для КУ, состоящей из трех секций КБ.

Ступенчатое регулирование требует введения в регулятор напряжения КУ зоны нечувствительности DU. В пределах этой зоны при снижении напряжения подключение очередной секции недопустимо. Невыполнение этого условия привело бы к неустойчивой работе КУ. Ширина зоны нечувствительности должна быть больше, чем приращение напряжения, вызванное подключением очередной секции КУ. В противном случае напряжение на КУ достигнет напряжения уставки срабатывания на отключение этой секции сразу после ее включения. Вероятность такого эффекта тем больше, чем больше мощность подключаемой секции и чем меньше зона нечувствительности регулятора КУ.

Конденсаторная установка состоит, как правило, из нескольких секций, имеющих общую систему управления. Низковольтные КУ напряжением 380 В собираются из трехфазных конденсаторов, включенных параллельно. Для защиты таких КУ от коротких замыканий и перегрузки применяют предохранители (рис. 3, б). Высоковольтные конденсаторные установки собираются из однофазных конденсаторов, включенных последовательно-параллельно (рис. 8.5, а).

Рисунок 3

Включение КУ сопровождается бросками тока, а отключение — перенапряжением, что отрицательно сказывается на сроке службы конденсаторов и коммутационной аппаратуры. Поэтому КУ, оборудованную выключателями (контакторами), не рекомендуется включать-выключать более 2—4 раз за сутки. Для ограничения бросков тока конденсаторы перед включением обязательно должны быть разряжены с помощью разрядных резисторов R или трансформаторов напряжения TV (рис. 8.5). Обычно эти устройства постоянно подключены к конденсаторам, а резисторы могут быть встроены внутри конденсатора.

В этой связи такие КУ пригодны только для регулирования реактивной мощности с целью обеспечения ее баланса в той или иной точке сети или в узле нагрузки. В этом режиме КУ применяют для снижения потерь напряжения в передающей сети, а также потерь мощности и электроэнергии. Эффект и в том, и в другом случае проявляется за счет компенсации реактивной мощности, протекающей по линии, питающей нагрузку.

Конденсаторы в силу их параметрических свойств очень чувствительны к искажениям синусоидальной формы кривой напряжения, т.е. к высшим гармоникам тока. Действительно, сопротивление конденсатора ХС = 1/(nωС) тем меньше, чем выше частота nω гармоники в несинусоидальной кривой приложенного напряжения. В результате за счет высших гармоник, проникающих в конденсатор, резко возрастают и потери мощности DР в конденсаторах, что приводит к их дополнительному нагреву:

где U(n) — напряжение гармоники; n —порядок гармоники; С — емкость конденсатора; ω = 2pf — частота напряжения сети (f = 50 Гц); tgδ — характеристика диэлектрика конденсатора.


Поделиться с друзьями:

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.006 с.