Основные этапы развития учения о наследственности и изменчивости у микроорганизмов. — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Основные этапы развития учения о наследственности и изменчивости у микроорганизмов.

2018-01-13 1101
Основные этапы развития учения о наследственности и изменчивости у микроорганизмов. 0.00 из 5.00 0 оценок
Заказать работу

0. Эвристический (донаучный) период.

Судя по археологическим данным, 6000 лет назад надписи на глиняных табличках гласили: «физические признаки могут передаваться от одного поколения другому»; в частности, вавилонские глиняные таблички указывают на возможные признаки при скрещивании лошадей, улучшение породы других животных и сортов растений.

I. Эмпирический (научный) период (середина XIX века).

Исходной точкой становления генетики как науки послужили труды Г. Менделя. В 1865 г. австрийский монах Грегор Мендель обнародовал труды по скрещиванию сортов гороха: «наследственные признаки не смешиваются, а передаются от родителей к потомкам в виде обособленных (дискретных) единиц». Однако эти работы настолько опередили развитие биологии того времени, что оказались невостребованными.

Однако корни генетики бактерий берут свое начало от первых попыток систематики бактерий. Работы Л. Пастера и Р. Коха побудили открытие новых микроорганизмов, необходимо было их систематизировать, то есть сопоставить сходные признаки и различия. И здесь мнения ученых разделились. Существовало мнение полиморфистов (плеоморфисты), которые считали, что все свойства бактерий изменяются, и мономорфистов, которые утверждали, что свойства микроорганизмов неизменны. После длительной дискуссии победу одержали плеоморфисты, а результаты почти векового спора двух направлений послужили основой для генетики бактерий.

II. Классический период (начало XX века).

В 1900 г. К. Корренс, Э. фон Чермак, Г. Де Фриз в работах по гибридизации бактерий переоткрывают законы Менделя, которые к тому времени были забыты. С этого момента начинается бурное развитие генетики высших организмов (растений, животных).

В 1903 г. Иогансен предложил термин «ген».

В 1906 г. Бетсон дал определение «генетики».

В 1925 г. Надсон, Филипов изучили действие рентгеновских лучей на дрожжи, в 1927 г. изучены термические мутации.

В 1928 г. Фредерик Гриффитс обнаружил молекулу наследственности, которая передается от бактерии к бактерии.

III. Период молекулярной генетики (с середины XX века).

Основные открытия в генетике бактерий приходятся на середину XIX века, когда у ученых появилась возможность не просто систематизировать сведения об изменчивости и наследственности, но и расшифровать их «тонкие» механизмы. В этот период была проведены расшифровка структуры ДНК, триплетного кода, описание механизмов синтеза белка, обнаружение рестриктаз и секвенирование ДНК.

В 1944 г. О. Эвери, К. Мак Леод, М. Мак Карти изолируют ДНК, осуществив трансформацию бескапсульных пневмококков в капсульные in vitro, тем самым доказав, что материальной единицей наследственности (генетическим материалом) у бактерий является ДНК.

В 1952 г. Чейз доказывает, что генетическая информация бактериофагов содержится также в ДНК.

В 1953 г. Ф. Крик, Д. Уотсон смоделировали структуру и репликацию ДНК, обосновали приложимость этой модели к наследственности и изменчивости микроорганизмов.

В 40-50 гг. – были выявлены системы рекомбинации у бактерий: трансдукция, трансформация и конъюгация. Затем открыты внехромосомные факторы наследственности: плазмиды, транспозоны, Is-элементы и т.д.

В 1958 г. Шталь доказал, что удвоение ДНК у бактерий носит полуконсервативный характер.

В 1961 г. Ф. Крик, Бернет и Д. Уотсон сформулировали общие принципы организации генетического кода на примере генетического кода E. coli (код является триплетным, вырожденным и неперекрывающимся).

В 1970 г. у бактерий палочки инфлюэнцы обнаружены ферменты рестриктазы.

В 1977 г. лаборатория Зангера полностью секвенировала геном бактериофага.

В 1983 г. Кэри Мелис открывает ПЦР для простой и быстрой амплификации ДНК.

В 1995 г. полностью секвенирован геном организма невирусной природы – бактерии Haemophylus influenzae.

В 1996 г. впервые секвенирован геном пекарских дрожжей (Saccharomyces cerevisiae).

В 1998 г. секвенирован геном многоклеточного организма – нематоды.

В 2001 г. сделаны первые «наброски» полной последовательности генома человека.

В 2003 г. секвенировано 99% генома человека.

В настоящее время развивается биотехнология, инженерная энзимология – использование микробных ферментов на носителе (разработан препарат иммобилизованная стрептокиназа – «стрептодеказа», который вводят в сосуд для растворения тромба; растворимая в воде полисахаридная матрица с привязанной

стрептокиназой повышает устойчивость фермента, снижает его токсичность, аллергическое действие, повышает способность растворять тромбы). Бурными темпами развивается клеточная инженерия (гибридомы), тканевая инженерия (способ получения кератоноцитов), генная инженерия (получен промышленный штамм микроорганизма-сверхпродуцента, синтезирующего аминокислоту «треонин» для добавления в корм животным с целью наращивания мышечной ткани).

Что такое генотип, фенотип?

Генотип – это совокупность генов, определяющих способность микроорганизмов к фенотипическому проявлению любого их признака.

Различают истинный генотип и плазмотип.

Истинный генотип – совокупность генов, сосредоточенных в бактериальной хромосоме и отвечающих за проявление жизненно важных признаков и свойств.

Плазмотип – совокупность внехромосомных генов, локализованных в плазмидах и транспозонах и отвечающих за нежизненно важные признаки и свойства, но придающие определенные преимущества перед другими особями популяции (устойчивость к антибиотикам).

Фенотип – это совокупность всех внешних и внутренних признаков микроорганизмов, которые проявляются в данных условиях и данный момент.

Ненаследственная (модификационная, фенотипическая) изменчивость – это временные ненаследуемые изменения признаков или свойств, не затрагивающие генотипа (не сопровождаются изменениями в первичной структуре ДНК) и возникающие под действием факторов окружающей среды.

Модификационная изменчивость не играет существенной роли в эволюции бактерий, так как не приводит к появлению новых видов. По существу это адаптивная (приспособительная) реакция бактерий на изменение условий окружающей среды, позволяющая быстро приспосабливаться и сохранять численность популяции. Внешне модификации чаще всего проявляются изменениями морфологических и биохимических свойств. При устранении фактора, вызвавшего изменения, бактерия возвращается к исходному фенотипу.

 


Поделиться с друзьями:

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.