Углеводы: определение, классификация. — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Углеводы: определение, классификация.

2018-01-13 999
Углеводы: определение, классификация. 0.00 из 5.00 0 оценок
Заказать работу

Углево́ды (сахара, сахариды) — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп.

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные.

Углеводы, содержащие одну единицу, называются моносахариды, две единицы – дисахариды, от двух до десяти единиц — олигосахариды, а более десяти — полисахариды. Обычные моносахариды представляют собой полиокси-альдегиды (альдозы) или полиоксикетоны (кетозы) с линейной цепью атомов углерода (m = 3-9), каждый из которых (кроме карбонильного углерода) связан с гидроксильной группой.

Простейший из моносахаридов - глицериновый альдегид - содержит один асимметрический атом углерода и известен в виде двух оптических изомеров (D и L). Моносахариды быстро повышают содержание сахара в крови, и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях.

Многие дисахариды обычно называются сахарами, этим подчеркивается их вкусовая особенность - сладость. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые медленными углеводами постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами.

Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры, с образованием сотни и тысячи молекул моносахаридов.

В живых организмах углеводы выполняют следующие функции:

1. Являются энергетическими субстратами для синтеза АТФ.

2. Пластический материал (гликопротеины и гликолипиды входят в состав мембран).

3. Входят в состав нуклеиновых кислот.

4. Входят в состав коферментов (ФАД, НАД).

5. Являются компонентами антисвертывающей системы (гепарин).

6. Продукты катаболизма липидов могут быть использованы для биосинтеза липидов, заменимых аминокислот, белков.

7. Входят в состав антител, выполняя защитную роль.

8. Входят в состав лекарственных препаратов (сердечные гликозиды).

9. Продукты обмена углеводов могут быть использованы при детоксикации ксенобиотиков (например, глюкуроновая кислота).

10. Осморегуляция (глюкоза).

2. Моносахариды: классификация, примеры.

Моносахари́ды (от греческого monos - единственный, sacchar - сахар) - простейшие углеводы, не гидролизующиеся с образованием более простых углеводов - обычно представляют собой бесцветные, легко растворимые в воде, плохо - в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения, одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза.

В зависимости от длины углеродной цепи (от трёх до десяти атомов, моносахариды с более длинной цепью атомов С в природе неизвестны) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы. Моносахариды — стандартные блоки, из которых синтезируются дисахариды,олигосахариды и полисахариды.

Один из атомов углерода в молекуле моносахаридов представлен всегда в виде карбонильной группы (-С=О). Если карбонильная группа находится на конце молекулы, т.е. занимает терминальное положение, моносахарид является альдегидоспиртом, и его называют альдозой. Если же карбонильная группа не занимает краевого положения в молекуле, то она представлена кетонной группой, и такие моносахариды называются кетозами.

а) Триозы. Они образуются при окислении трехатомного спирта
глицерина. В случае окисления первичной спиртовой группы образуется
глицериновый альдегид, а при окислении вторичной - диоксиацетон:

Триозы - продукты распада углеводов в тканях. Они образуются в фосфорилированном состоянии при расщеплении фруктозо-1,6-дифосфорной кислоты.

В тканях фосфотриозы не накапливаются, а подвергаются дальнейшим превращениям.

б) Пентозы.

 

 

Ксилоза часто встречается в растениях. Используется в кондитерской промышленности (для диабетиков).

Рибоза и дезоксирибоза входят в состав РНК и ДНК, рибоза образуется так же в пентозном цикле распада глюкозы.


в) Гексозы

 

Д-глюкоза, виноградный сахар, декстроза. Ее особенно много в зрелом винограде, отсюда ее название. Раствор Д-глюкозы вращает поляризованный луч вправо, поэтому возникло еще название - декстроза (лат. dexter - правый). Содержание глюкозы в крови человека 80-120 мг% (3,5 – 5,6 ммоль/л). В качестве промежуточного продукта распада углеводов в тканях и клетках глюкоза встречается в фосфорилированном виде:

Д-галактоза является составной частью молочного сахара (лактозы), а также составной частью цереброзидов - сложных липидов, входящих в состав мозга.

Д-фруктоз а, плодовый сахар, левулеза содержится в плодах, в нектаре цветов (меде). Вращает поляризованный луч влево, отсюда название - левулеза. Фруктоза входит в состав сахарозы.

 

3. Стереоизомерия моносахаридов. D- и L- стереохимические ряды. Открытые и циклические формы. Формулы Фишера, Колли-Толленса и Хеуорса. Фуранозы и пиранозы; α- и β- аномеры. Цикло-оксо-таутомерия. Мутаротация. Конформации пиранозных форм моносахаридов.

 

Стереоизомерия. Молекулы моносахаридов содержат несколько центров хиральности, что служит причиной существования многих стереоизомеров, отвечающих одной и той же структурной формуле. Например, в альдогексозе имеются четыре асимметрических атома углерода и ей соответствуют 16 стереоизомеров (24), т. е. 8 пар энантиомеров. По сравнению с соответствующими альдозами кетогексозы содержат на один хиральный атом углерода меньше, поэтому число стереоизомеров (23) уменьшается до 8 (4 пары энантиомеров).

Открытые (нециклические) формы моносахаридов изображают в виде проекционных формул Фишера. Углеродную цепь в них записывают вертикально. У альдоз наверху помещают альдегидную группу, у кетоз - соседнюю с карбонильной первичную спиртовую группу. С этих групп начинают нумерацию цепи.

Для обозначения стереохимии используется D,L-система. Отнесение моносахарида к D- или L-ряду проводят по конфигурации хирального центра, наиболее удаленного от оксогруппы, независимо от конфигурации остальных центров! Для пентоз таким «определяющим» центром является атом С-4, а для гексоз - С-5. Положение группы ОН у последнего центра хиральности справа свидетельствует о принадлежности моносахарида к D-ряду, слева - к L-ряду, т. е. по аналогии со стереохимическим стандартом - глицериновым альдегидом.

 

Каждой альдозе d-ряда соответствует энантиомер l-ряда с противоположной конфигурацией всех центров хиральности.

Циклические формы. Открытые формы моносахаридов удобны для рассмотрения пространственных отношений между стереоизомерными моносахаридами. В действительности моносахариды по строению являются циклическими полуацеталями. Образование циклических форм моносахаридов можно представить как результат внутримолекулярного взаимодействия карбонильной и гидроксильной групп, содержащихся в молекуле моносахарида.

 

Полуацетальную гидроксильную группу в химии углеводов называют гликозидной. По свойствам она значительно отличается от остальных (спиртовых) гидроксильных групп.

В результате циклизации образуются термодинамически более устойчивые фуранозные (пятичленные) и пиранозные (шестичленные) циклы. Названия циклов происходят от названий родственных гетероциклических соединений - фурана и пирана.

Образование этих циклов связано со способностью углеродных цепей моносахаридов принимать достаточно выгодную клешневидную конформацию. Вследствие этого в пространстве оказываются сближенными альдегидная (или кетонная) и гидроксильная при С-4 (или при С-5) группы, т.е. те функциональные группы, в результате взаимодействия которых осуществляется внутримолекулярная циклизация. Если у альдогексоз в реакцию вступит гидроксильная группа при С-5, то возникает полуацеталь с шестичленным пиранозным циклом. Аналогичный цикл у кетогексоз получается при участии в реакции гидроксильной группы при С-6.

В названиях циклических форм наряду с названием моносахарида указывают размер цикла словами пираноза или фураноза. Если в циклизации у альдогексоз участвует гидроксильная группа при С-4, а у кетогексоз - при С-5, то получаются полуацетали с пятичленным фуранозным циклом.

В циклической форме создается дополнительный центр хиральности - атом углерода, ранее входивший в состав карбонильной группы (у альдоз это С-1). Этот атом называют аномерным, а два соответствующих стереоизомера - α- и β-аномерами. Аномеры представляют собой частный случай эпимеров.

Различные конфигурации аномерного атома углерода возникают вследствие того, что альдегидная группа из-за поворота вокруг σ-связи С-1-С-2 атакуется нуклеофильным атомом кислорода фактически с разных сторон. В результате образуются полуацетали с противоположными конфигурациями аномерного центра.

 

У α-аномера конфигурация аномерного центра одинакова с конфигурацией «концевого» хирального центра, определяющего принадлежность к d- или l-ряду, а у β-аномера - противоположна. В проекционных формулах Фишера у моносахаридов d-ряда в α-аномере гликозидная группа ОН находится справа, а в β-аномере - слева от углеродной цепи.

Рис. Образование α- и β-аномеров на примере d-глюкозы

 

Формулы Хеуорса. Циклические формы моносахаридов изображают в виде перспективных формул Хеуорса, в которых циклы показывают в виде плоских многоугольников, лежащих перпендикулярно плоскости рисунка. Атом кислорода располагают в пиранозном цикле в дальнем правом углу, в фуранозном - за плоскостью цикла. Символы атомов углерода в циклах не указывают.

Для перехода к формулам Хеуорса циклическую формулу Фишера преобразуют так, чтобы атом кислорода цикла располагался на одной прямой с атомами углерода, входящими в цикл. Это показано ниже на примере a-d-глюкопиранозы путем двух перестановок у атома С-5, что не изменяет конфигурацию этого асимметрического центра. Если преобразованную формулу Фишера расположить горизонтально, как требуют правила написания формул Хеуорса, то заместители, находившиеся справа от вертикальной линии углеродной цепи, окажутся под плоскостью цикла, а те, что были слева, - над этой плоскостью.

У d-альдогексоз в пиранозной форме (и у d-альдопентоз в фуранозной форме) группа СН2ОН всегда располагается над плоскостью цикла, что служит формальным признаком d-ряда. Гликозидная гидроксильная группа у a-аномеров d-альдоз оказывается под плоскостью цикла, у β-аномеров - над плоскостью.

С целью упрощения в формулах Хеуорса часто не изображают символы атомов водорода и их связи с атомами углерода цикла. Если речь идет о смеси аномеров или стереоизомере с неизвестной конфигурацией аномерного центра, то положение гликозидной группы ОН обозначают волнистой линией.

 

D-ГЛЮКОПИРАНОЗА

По аналогичным правилам осуществляется переход и у кетоз, что показано ниже на примере одного из аномеров фуранозной формы d-фруктозы.

Цикло-оксо-таутомерия

В твердом состоянии моносахариды находятся в циклической форме. В зависимости от того, из какого растворителя была перекристаллизована d-глюкоза, она получается либо в виде a-d-глюкопиранозы (из спирта или воды), либо в виде β-d-глюкопиранозы (из пиридина). Они различаются величиной угла удельного вращения, а именно +112° у a-аномера и +19° у β-аномера. У свежеприготовленного раствора каждого аномера при стоянии наблюдается изменение удельного вращения до достижения постоянного, одинакового для того и другого раствора угла вращения +52,5°.

Изменение во времени угла вращения плоскости поляризации света растворами углеводов называют мутаротацией.

Химическая сущность мутаротации состоит в способности моносахаридов к существованию в виде равновесной смеси таутомеров - открытой и циклических форм. Такой вид таутомерии называется цикло-оксо-таутомерией.

В растворах равновесие между четырьмя циклическими таутомерами моносахаридов устанавливается через открытую форму - оксоформу. Взаимопревращение a- и β-аномеров друг в друга через промежуточную оксоформу называется аномеризацией.

Таким образом, в растворе d-глюкоза существует в виде таутомеров: оксоформы и a- и β-аномеров пиранозных и фуранозных циклических форм.

В смеси таутомеров преобладают пиранозные формы. Оксоформа, а также таутомеры с фуранозными циклами содержатся в малых количествах. Важно, однако, не абсолютное содержание того или иного таутомера, а возможность их перехода друг в друга, что приводит к пополнению количества «нужной» формы по мере ее расходова-

 

ния в каком-либо процессе. Например, несмотря на незначительное содержание оксоформы, глюкоза вступает в реакции, характерные для альдегидной группы.

Аналогичные таутомерные превращения происходят в растворах со всеми моносахаридами и большинством известных олигосахаридов. Ниже приведена схема таутомерных превращений важнейшего представителя кетогексоз - d-фруктозы, содержащейся во фруктах, меде, а также входящей в состав сахарозы.

Конформации

Наглядные формулы Хеуорса тем не менее не отражают реальной геометрии молекул моносахаридов, поскольку пяти- и шестичленные циклы не являются плоскими. Так, шестичленный пиранозный цикл, подобно циклогексану, принимает наиболее выгодную конформацию кресла. В распространенных моносахаридах объемная первичноспиртовая группа СН2ОН и большинство гидроксильных групп находятся в более выгодных экваториальных положениях.

Из двух аномеров d-глюкопиранозы в растворе преобладает β-аномер, у которого все заместители, включая полуацетальный гидроксил, расположены экваториально.

Высокой термодинамической устойчивостью d-глюкопиранозы, обусловленной ее конформационным строением, объясняется наибольшее распространение d-глюкозы в природе среди моносахаридов.

Конформационное строение моносахаридов предопределяет пространственное расположение полисахаридных цепей, формируя их вторичную структуру.

 

 

4. Строение наиболее важных представителей пентоз (рибоза, 2-дезоксирибоза, ксилоза); гексоз (глюкоза, манноза, галактоза, фруктоза), аминосахаров (глюкозамин, маннозамин, галактозамин), их роль.

Большинство природных моносахаридов принадлежит к D-ряду. Из альдопентоз часто встречаются D-рибоза и D-ксилоза, а из кетопентоз - D-рибулоза и D-ксилулоза. Общие названия кетоз образуются введением суффикса -ул в названия соответствующих альдоз: рибозе соответствует рибулоза, ксилозе - ксилулоза (из этого правила выпадает название «фруктоза», которое не имеет связи с названием соответствующей альдозы).

 

Как видно из приведенных выше формул, стереоизомерные d-альдогексозы, равно как d-альдопентозы и d-кетопентозы, являются диастереомерами. Среди них есть такие, которые отличаются конфигурацией только одного центра хиральности. Диастереомеры, различающиеся конфигурацией только одного асимметрического атома углерода, называются эпимерами. Эпимеры - частный случай диастереомеров. Например, d-глюкоза и d-галактоза отличаются друг от друга только конфигурацией атома С-4, т. е. являются эпимерами по С-4. Аналогично d-глюкоза и d-манноза - эпимеры по С-2, а d-рибоза и d-ксилоза - по С-3.

Дезоксисахара. Самый распространенный из дезоксисахаров - 2-дезокси-D-рибоза - является структурным компонентом ДНК. В природных сердечных гликозидах, применяемых в кардиологии, содержатся остатки дидезоксисахаров, например дигитоксозы (сердечные гликозиды наперстянки).

Аминосахара. Эти производные, содержащие вместо гидроксильной группы аминогруппу (обычно при С-2), обладают основными свойствами и образуют с кислотами кристаллические соли. Важнейшими представителями аминосахаров служат аналоги d-глюкозы и d-галактозы, для которых часто используют полутривиаль-

ные названия - d-глюкозамин (2-дезокси-2-амино-D-глюкоза) и d-галактозамин (2-дезокси-2-амино-D-галактоза) соответственно. Аминогруппа в них может быть ацилирована остатками уксусной, иногда серной кислоты.

Сравнительно недавно открыт D-маннозамин (2-амино-2-дезокси-D-манноза):

СОН

ОН – С - Н

ОН – С - Н

Н – С - ОН

Н – С - ОН

СН2-ОН

Аминосахара (обычно в виде N-ацетальных производных) входят в состав мукополисахаридов (полисахаридов плазмы крови, иммунополисахаридов, хитина) и мукопротеидов (гликопротеидов).

Глюкозамин – главный аминосахар нашего организма. Именно его, либо его модификации (ацетилглюкозамин, галактозамин, маннозамин) организм использует в качестве строительного материала многих гликопротеинов соединительной ткани – гиалуроновой кислоты, хондроитин-, гепарин-, кератан- сульфатов.

D-Глюкозаминсульфат непосредственно является мономером протеогликана хрящевой ткани – хондроитинсульфата. Поэтому давно и с успехом используется в медицине как препарат, предупреждающий прогрессирование различных заболеваний суставов.
D–Глюкозамин относится к так называемым «сигнальным» молекулам, т.к.:

1. Стимулирует основной фактор роста фибробластов.

2. Способствует выработке оксида азота макрофагами, тем самым оказывая сосудорасширяющий эффект.

3. Подавляет образование фибробластами и кератиноцитами Интерлейкина–1 α одного из медиаторов острого и хронического воспаления, стимулятора матриксных металлопротеиназ – разрушителей экстрацеллюлярного матрикса кожи.

4. Подавляет образование TNF-α (фактора некроза опухолей альфа), под влиянием которого увеличивается образование макрофагами и нейтрофилами перекиси водорода и других свободных радикалов.

Галактозамин (хондрозамин) - структурный компонент хондроитинсерной кислоты, входящей в состав соединительной ткани (особенно хрящевой).

Маннозамин входит в состав сиаловых кислот.

 

5. Реакция фосфорилирования моносахаридов и ее биологическое значение. Гидролиз фосфатов.

В клетках глюкоза и другие моносахариды с использованием АТФ фосфорилируются до фосфорных эфиров, например: глюкоза + АТФ → глюкозо-6-фосфат + АДФ

Эта реакция катализируется ферментом гексокиназой (в клеточных условиях гексокиназа неспособна осуществлять обратную реакцию).

Значение фосфорилирования промежуточных соединений:

1. Поскольку в клеточной мембране, как правило, отсутствуют белки-переносчики для фосфорилированных сахаров, фосфорилированные промежуточные соединения, а также глюкозо-6-фосфат не могут покинуть клетку. После первоначального фосфорилирования для удержания внутри клетки фосфорилированных соединений больше не нужно дополнительной энергии, несмотря на большую разницу между внутри- и внеклеточной концентрацией этих соединений.

2. Фосфатные группы необходимы для хранения метаболической энергии. Энергия, которая потенциально может быть высвобождена при гидролизе фосфоангидридных связей (например, в АТФ), частично запасается при образовании эфиров фосфорной кислоты, например, глюкозо-6-фосфата. В дальнейшем высокоэнергетические соединения, содержащие фосфатную группу и образующиеся в ходе гликолиза (1,3-дифосфоглицерат и фосфоенолпируват), выступают в качестве доноров фосфорильной группы при образовании АТФ из АДФ.

3. Энергия связывания фосфатных групп с активными центрами ферментов снижает энергию активации и увеличивает специфичность ферментативных реакций. Фосфатные группы АДФ, АТФ и промежуточных продуктов гликолиза образуют комплексы с ионами Mg2+. Места связывания субстрата многих ферментов специфичны к этим комплексам. Для активности большинства ферментов гликолиза необходим Mg2+.

Гидролиз глюкозо-6-фосфата

Глюкозо-6-фосфат, подобно всем другим фосфорилированным интермедиатам, «заперт» в клетке, будучи не способным проходить через цитоплазматическую мембрану. Однако, имеются три ткани, клетки которых должны быть способны выделять глюкозу в кровоток, а именно: ткани печени и эпителий почечных канальцев и тонкого кишечника. Это становится возможным благодаря действию фермента глюкозо-6-фосфатазы, который катализирует реакцию:

глюкозо-6-фосфат + Н2О → глюкоза + Н3РО4

Полученная в ходе реакции глюкоза с током крови транспортируется к клеткам органов и тканей, что имеет большое значение при голодании.

6. О - и N- гликозиды. Их образование и гидролиз; биологическая роль гликозидов.

К гликозидам относят производные циклических форм углеводов, в которых полуацетальная гидроксильная группа заменена группой OR. Неуглеводный компонент гликозида называют агликоном. Связь между аномерным центром (в альдозах это С-1, в кетозах - С-2) и группой OR называют гликозидной. Гликозиды являются ацеталями циклических форм альдоз или кетоз.

В зависимости от размера оксидного цикла гликозиды подразделяют на пиранозиды и фуранозиды. Гликозиды глюкозы называют глюкозидами, рибозы - рибозидами и т. п. В полном названии гликозидов последовательно указывают наименование радикала R, конфигурацию аномерного центра (α- или β-) и название углеводного остатка с заменой суффикса -оза на -озид (см. примеры в схеме реакции ниже).

 

Гликозиды образуются при взаимодействии моносахаридов со спиртами в условиях кислотного катализа; при этом в реакцию вступает только полуацетальная группа ОН.

Реакция образования О-гликозидов лежит в основе образования ди-, олиго- и полисахаридов.

При гидролизе О-гликозидной связи полисахариды расщепляются на более короткие фрагменты, а при полном гидролизе – на образующие полисахариды моносахара. Например, при ферментативном гидролизе α-1,4 и α-1,6-О-гликозидных связей в молекуле крахмала (основной полисахарид пищи) в желудочно-кишечном тракте человека образуется α-глюкоза.

Рассмотрим N-гликозиды на примере реакции взаимодействия азотистого гетероциклического основания и пентозы. Азотистое основание присоединяется к углеводному компоненту вместо полуацетального гидроксила через атом азота в положении 1 для пиримидинов и 9 для пуринов, образуя N-гликозидную связь. На рисунке показано образование Аденозина – пуринового нуклеозида, состоящего из азотистого основания аденина и ß,Д-рибофуранозы. Реакция обратима. При гидролизе нуклеозида образуется азотистое основание и углевод – рибоза.

 

Реакция образование N-гликозидов лежит в основе образования нуклеозидов, нуклеотидов и нуклеиновых кислот, кофакторов.

 


Поделиться с друзьями:

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.063 с.