Введение в микроэлектронику. Области применения микроэлектроники — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Введение в микроэлектронику. Области применения микроэлектроники

2018-01-28 1083
Введение в микроэлектронику. Области применения микроэлектроники 0.00 из 5.00 0 оценок
Заказать работу

Введение в микроэлектронику. Области применения микроэлектроники

Современное развитие всех областей промышленности характеризуется значительным усложнением задач, возлагаемых на электронную аппаратуру. В этих условиях построение аппаратуры на основе дискретных компонентов (транзисторов, диодов, резисторов, конденсаторов и т.д.) не может удовлетворить предъявляемых к ней требований. Множество компонентов, разветвленность межэлементных соединений, обилие паек, низкая плотность монтажа приводят к значительной трудоемкости изготовления, большим массе и габаритам, высокой стоимости и низкой надежности аппаратуры при таком принципе ее выполнения.

Микроэлектроника — это современное направление электроники, охватывающее конструирование, изготовление и применение электронных узлов, блоков и устройств с высокой степенью миниатюризации. Микроэлектроника решает проблемы существенного повышения надежности, уменьшения массо-габаритных показателей и стоимости электронной аппаратуры.

Области применения микроэлектроники

· Связь

- телефонные линии(Важнейшая движущая сила развития электронных схем вначало 20 века)

- Беспроводные схемы связи(Телеграф, радио, аналоговое телевидение, HDTV, мобильный телефон,...)

· Компьютер

- Программные функции выполняются с помощью электронных схем (Логические вентили)

· Бытовая электроника

- Цифровая камера, iPod, WII, усилитель Wi-Fi,...

· Другие, такие как получение биомедицинских сигналов,aвтомобильная электроника...

 

 


 

Опишите радиационных поясов Земли. Виды

Радиационные пояса Земли, внутренние области земной магнитосферы, в которых магнитное поле Земли удерживает заряженные частицы (протоны, электроны, альфа-частицы), обладающие кинетической энергией от десятков кэв до сотен Мэв.

Выходу заряженных частиц из Р. п. З. мешает особая конфигурация силовых линий геомагнитного поля, создающего для заряженных частиц магнитную ловушку. Захваченные в магнитную ловушку Земли частицы под действием Лоренца силы совершают сложное движение, которое можно представить как колебательное движение по спиральной траектории вдоль силовой линии магнитного поля из Северного полушария в Южное и обратно с одновременным более медленным перемещением (долготным дрейфом) вокруг Земли.

Начало космонавтики ознаменовалось рядом открытий, одним из которых было открытие радиационных поясов Земли. Внутренний радиационный пояс Земли был открыт американским учёным Джеймсом ван Алленом после полета Эксплорер-1. Внешний радиационный пояс Земли был открыт советскими учёными С. Н. Верновым и А. Е. Чудаковым после полёта Спутник-3 в 1958 году.

Эти области магнитосферы, где накапливаются и удерживаются проникшие в нее высокоэнергичные заряженные частицы (в основном протоны и электроны) и частицы с кинетической энергией E меньше критической называются радиационными поясами. Земля имеет три радиационных пояса, а сейчас открыли еще и четвертый. Радиационный пояс Земли представляет собой тороид.
Первый такой пояс начинается на высоте примерно 500 км над западным и 1500 км над восточным полушарием Земли. Самая большая концентрация частиц этого пояса — его ядро — находится на высоте двух-трех тысяч километров. Верхняя граница этого пояса достигает трех-четырех тысяч километров над поверхностью Земли.
Второй пояс простирается от 10—11 до 40—60 тыс. км с максимальной плотностью частиц на высоте 20 тыс. км.
Внешний пояс начинается на высоте 60—75 тыс. км

Отличаются эти пояса друг от друга тем, что первый из них, самый близкий к Земле, состоит из положительно заряженных протонов, обладающих очень большой энергией — порядка 100 Мое. Их смогла захватить и удержать только самая плотная часть магнитного поля Земли. Поток протонов в нем довольно устойчив во времени и не испытывает резких колебаний.
Второй пояс состоит, главным образом, из электронов с энергией «всего лишь» 30—100 кэв. В нем движутся большие потоки частиц, чем во внутреннем поясе, он испытывает резкие колебания.
В третьем поясе, где магнитное поле Земли самое слабое, удерживаются частицы с энергией 200 эв и более.


Отказы и сбои приборов КА

Интересной особенностью радиационного воздействия на аналоговые биполярные ИС является обнаруженный в начале 1990-х гг. «эффект низкой интенсивности излучения», заклю- чающийся в усилении деградации параметров микросхемы по мере снижения интенсивности облучения при условии сохране- ния неизменной суммарной поглощенной дозы. Возникновение этого эффекта связано с процессами в толстых оксидных слоях, имеющихся в биполярных ИС. Современные цифровые ИС строятся на основе структур ме- талл–окисел-полупроводник (МОП), функционирующих на ос- новных носителях заряда, вследствие чего радиационные де- фекты оказывают на них малое влияние. Однако для таких ИС весьма критичными являются эффекты, вызываемые отдельными заряженными частицами ГКЛ, СКЛ или РПЗ.

 

Существует несколько видов подобных эффектов, но наиболее часто возни- кают обратимые одиночные сбои.

Эффекты РПЗ на КА

Основными источниками радиационной опасности на КА являются три наиболее мощных и достаточно хорошо изученных радиационных поля, которые отличаются своим происхождением и состоят из потоков частиц с отличными энергетическими спектрами.
Другие известные радиационные поля (ионы аномального компонента космических лучей, ионы захваченной радиации, электроны и протоны альбедо на низких высотах), состоят из более слабых потоков частиц и еще недостаточно изучены. Основная часть этих потоков состоит из частиц с энергией менее нескольких МэВ и поэтому их вклад в радиационную опасность на КА в основном должен быть связан с поверхностными эффектами.

В межпланетном пространстве существуют:

· галактические космические лучи (ГКЛ), в состав которых входят протоны и ядра химических элементов;

· солнечные космические лучи (СКЛ), в состав которых входят протоны и ионы химических элементов.

В околоземном космическом пространстве существуют:

· радиационные пояса Земли (РПЗ), которые в основном состоят из электронов и протонов, захваченных магнитным полем Земли.

12. Межпланетные миссии. Электронная бортовая аппаратура межпланетных КА

Список межпланетных космических аппаратов — список космических аппаратов, которые использовались для исследования планет, комет и астероидов Солнечной системы. В списке приведены все межпланетные аппараты, запущенные в период с 1958 по 2011 год, а также государства и космические агентства, участвовавшие в запусках и исследованиях. Также приведены планируемые миссии, уже утверждённые национальными космическими агентствами. Данные представлены в хронологическом порядке, отдельно выделены удачные, неудачные, текущие и планируемые запуски.

Всего на март 2016 года было запущено 226 аппаратов[1] (включая пролётные миссии):

к Меркурию — 2

к Венере — 33

к Луне — 97 АМС + 9 пилотируемых кораблей

к Марсу — 46

к Юпитеру — 9

к Сатурну — 4

к Урану — 1

к Нептуну — 1

к Плутону — 1

к Церере — 1

к астероидам и кометам — 24

 

Геостационарные спутники

Геостационарный искусственный спутник Земли представляет собой аппарат, который двигается вокруг планеты в восточном направлении, по круговой экваториальной орбите с периодом обращения, равным периоду собственного вращения Земли. Если смотреть на такой спутник с Земли, то наблюдателю покажется, что он не движется, а стоит на одном месте. Высота его орбиты равна 36 000 километров от поверхности планеты. Именно с такой высоты видна почти половина поверхности Земли - openaxiom.ru. Поэтому, расположив равномерно вдоль экваториальной орбиты на равном расстоянии (через 120°) три одинаковых спутника, можно обеспечить непрерывное наблюдение за поверхностью планеты в диапазоне широт, равном плюс-минус 70°, и глобальную круглосуточную радио- и телевизионную связь.

Если бы геостационарные спутники были видны на небе невооружённым глазом, то линия, на которой они были бы видны, совпадала бы с «поясом Кларка» для данной местности.

Для перевода спутников с низковысотной орбиты на геостационарную используются переходные геостационарные (геопереходные) орбиты (ГПО) — эллиптические орбиты с перигеем на низкой высоте и апогеем на высоте, близкой к геостационарной орбите.

После завершения активной эксплуатации на остатках топлива спутник должен быть переведён на орбиту захоронения, расположенную на 200—300 км выше ГСО.

Спутник, обращающийся на геостационарной орбите, находится под воздействием ряда сил (возмущений), изменяющих параметры этой орбиты. В частности, к таким возмущениям относятся гравитационные лунно-солнечные возмущения, влияние неоднородности гравитационного поля Земли, эллиптичность экватора и т. д.

Космическая радиация. Типы

Радиация (часто также используется термин «ионизирующее излучение») — потоки элементарных частиц, ядер и электромагнитных квантов в широком диапазоне энергий [2] , взаимодействие которых с веществом вызывает ионизацию его атомов и молекул, разрушение атомной и молекулярной структуры вещества. Радиация приводит к негативным последствиям как в различных технических устройствах, так и в биологических объектах. Основные практически важные источники космической радиации — это галактические космические лучи (энергетический спектр до 1019 эВ/нуклон), солнечные космические лучи (в диапазоне энергий до 1000 МэВ), электроны (до 10 МэВ) и ионы (до 400 МэВ) радиационных поясов Земли, а также солнечные кванты рентгеновского и гамма излучений. Наиболее радиационно-опасными являются частицы с энергиями более 30-50 МэВ. Для большинства типов космической радиации основным механизмом передачи энергии веществу являются ионизационные потери, то есть вырывание электрона с внешней оболочки атома за счёт передачи ему части энергии налетающей частицы или генерация электронно-дырочных пар в веществе. Кроме этого для частиц с энергией, превышающей несколько 100 МэВ/нуклон, возможны ядерные реакции, порождающие значительное вторичное излучение (нейтроны, мезоны, гамма-кванты и фрагменты ядер), которое также следует учитывать при анализе радиационной обстановки.

 

Локальные

  • Перемещение космического аппарата в пространстве
  • Конструкция КА (защитные экраны)
  • Анизотропия потоков частиц и тень Земли

Солнечно космические лучи

Космические лучи (космическое излучение) - частицы, заполяющие межзвездное пространство и постоянно бомбардирующие Землю. Они были открыты в 1912 г. австрийским физиком В. Гессом с помощью ионизационной камеры на воздушном шаре. Максимальные энергии космических лучей ~3.1020 эВ, т.е. на несколько порядков превосходят энергии, доступные современным ускорителям на встречных пучках (максимальная эквивалентная энергия Теватрона ~2.1015 эВ, LHC - около 1017 эВ). Поэтому изучение космических лучей играет важную роль не только в физике космоса, но также и в физике элементарных частиц. Ряд элементарных частиц впервые был
обнаружен именно в космических лучах (позитрон - К.Д. Андерсон, 1932 г.; мюон (μ) – К.Д. Андерсон и С. Неддермейер, 1937 г.; пион (π) - С. Ф. Пауэлл, 1947 г.). Хотя в состав космических лучей входят не только заряженные, но и нейтральные частицы (особенно много фотонов и нейтрино), космическими лучами обычно называют заряженные частицы.
Различают следующие типы космических лучей (рис. 1):

Ядерным называется оружие, поражающее действие которого обусловлено энергией, выделяющейся при ядерных реакциях деления и синтеза. Оно является самым мощным видом оружия массового поражения. Ядерное оружие предназначено для массового поражения людей, уничтожения или разрушения административных и промышленных центров, различных объектов, сооружений и техники.

Поражающее действие ядерного взрыва зависит от мощности боеприпаса, вида взрыва, типа ядерного заряда. Мощность ядерного боеприпаса характеризуется тротиловым эквивалентом. Единица ее измерения - т, кт, Мт.

Рассмотрим поражающие факторы наземного ядерного взрыва и их воздействие на человека, промышленные объекты и т.д.

Поражающими факторами наземного ядерного взрыва являются:

воздушная ударная волна (50%);

световое излучение (35%);

проникающая радиация (4%);

радиоактивное заражение (10%);

электромагнитный импульс (1%).

Дадим краткую характеристику поражающих факторов ЯВ

1.1. Воздушная ударная волна - это зона сжатого воздуха, распростра-няющаяся от центра взрыва. Ее источник - высокое давление и температура в точке взрыва. Основные параметры ударной волны, определяющие ее пора-жающее действие:

избыточное давление во фронте ударной волны, ΔРф, Па (кгс/см2);

скоростной напор, ΔРск, Па (кгс/см2).

Миссия Вояджер

Проект «Вояджер» — один из самых выдающихся экспериментов, выполненных в космосе в последней четверти XX века. Расстояния до планет-гигантов слишком велики для наземных средств наблюдения, поэтому отправленные на Землю «Вояджерами» фотоснимки и данные измерений до сих пор имеют большую научную ценность.

Идея проекта впервые появилась в конце 1960-х годов, незадолго до запуска первых пилотируемых аппаратов к Луне и аппаратов «Пионер» к Юпитеру.

Первоначально планировалось исследовать только Юпитер и Сатурн. Однако благодаря тому, что все планеты-гиганты удачно расположились в сравнительно узком секторе Солнечной системыпарад планет»), было возможно использование гравитационных манёвров для облёта всех внешних планет, за исключением Плутона. Поэтому траектория полёта была рассчитана исходя из этой возможности, хотя официально изучение Урана и Нептуна не вошло в программу миссии (для гарантированного достижения этих планет потребовалось бы строительство более дорогих аппаратов с более высокими характеристиками по надёжности).

После того, как «Вояджер-1» успешно выполнил программу исследования Сатурна и его спутника Титана, было принято окончательное решение направить «Вояджер-2» к Урану и Нептуну. Для этого пришлось слегка изменить его траекторию, отказавшись от близкого пролёта около Титана.

После встречи с Нептуном траектория «Вояджера-2» отклонилась к югу. Теперь его полёт проходит под углом 48° к эклиптике, в южной полусфере. «Вояджер-1» поднимается над эклиптикой (начальный угол 38°). Аппараты навсегда покидают пределы Солнечной системы

Технические возможности аппаратов таковы: энергии в радиоизотопных термоэлектрических батареях хватит для работы по минимальной программе примерно до 2025 года [5] . Проблемой может стать возможная потеря Солнца солнечным датчиком, так как с большого расстояния Солнце становится всё более тусклым. Тогда направленный радиолуч отклонится от Земли, и приём сигналов аппарата станет невозможным. Это может произойти около 2030 года.

 

31. Нейтроны +10В и альфа частица. Их эффект на радиоэлектронную аппаратуру КА

Мощный поток нейтронов не задерживается обычной стальной бронёй и намного сильнее проникает сквозь преграды, чем рентгеновское или гамма-излучение, не говоря уже об альфа- и бета- частицах. Благодаря этому нейтронное оружие способно поражать живую силу противника на значительном расстоянии от эпицентра взрыва и в укрытиях, даже там, где обеспечивается надёжная защита от обычного ядерного взрыва. В биологических объектах под действием излучения происходит ионизация живой ткани, приводящая к нарушению жизнедеятельности отдельных систем и организма в целом, развитию лучевой болезни. На людей действует как само нейтронное излучение, так и наведённая радиация.

Поражающее действие нейтронного оружия на технику обусловлено взаимодействием нейтронов с конструкционными материалами и радиоэлектронной аппаратурой, что приводит к появлению наведённой радиоактивности и, как следствие, нарушению функционирования. В технике и предметах под действием потока нейтронов могут образовываться мощные и долго действующие источники радиоактивности, приводящие к поражению людей в течение длительного времени после взрыва. Так, например, экипаж танка Т-72, находящегося в 700 м от эпицентра нейтронного взрыва мощностью в 1 кт, мгновенно получит 50 % смертельной дозы облучения и погибнет в течение нескольких минут. Физически этот танк не пострадает, однако наведённая радиоактивность приведёт к получению новым экипажем, управляющим данным танком, смертельной дозы радиации в течение суток.

Из-за сильного поглощения и рассеивания нейтронов в атмосфере дальность поражения нейтронным излучением, по сравнению с дальностью поражения незащищённых целей ударной волной от взрыва обычного ядерного заряда той же мощности, невелика. Поэтому изготовление нейтронных зарядов высокой мощности нецелесообразно — излучение имеет малый радиус, а прочие поражающие факторы окажутся снижены. Реально производимые нейтронные боеприпасы имеют мощность не более 1 кт. Подрыв такого боеприпаса даёт зону поражения нейтронным излучением радиусом около 1,5 км (незащищённый человек получит опасную для жизни дозу радиации на расстоянии 1350 м). Вопреки распространённому мнению нейтронный взрыв вовсе не оставляет материальные ценности невредимыми: зона сильных разрушений ударной волной для того же килотонного заряда имеет радиус около 1 км.

Основные понятия в программе Multisim

Multisim – простой в использовании современный инструмент конструирования электронных приборов. Он состоит из набора взаимосвязанных модулей, предназначенных для составления, анализа и настройки аналоговых, цифровых, радиочастотных и гибридных схем, включая программируемые компоненты, проектирования топологии и разводки печатных плат, оптимизации расположения деталей и дизайна корпуса. Multisim, являясь серьезнейшим решением такого рода, в обращении интуитивно прост и нагляден, что делает его незаменимым при использовании в учебном процессе. Студенты, начинающие свой путь в области электротехники и электроники, гораздо быстрее смогут направить, полученные теоретические знания в практическое русло. Система виртуального схемотехнического моделирования Multisim является новой версией, уже зарекомендовавшего себя, семейства программ фирмы Electronics Workbench. Соответственно она включает в себя все достоинства предыдущих версий и расширенные возможности, которые сильно повышают функциональные технические возможности программы. Недостатком данной среды является отсутствие локализованной версии и базы данных по отечественным элементам.

Закон Ома для всей цепи

Этот закон определяет зависимость между ЭДС E источника питания с внутренним сопротивлением r 0 (рис. 1.3), током I электрической цепи и общим эквивалентным сопротивлением R Э= r 0+ R всей цепи:

(1.2)

.

Сложная электрическая цепь содержит, как правило, несколько ветвей, в которые могут быть включены свои источники питания и режим ее работы не может быть описан только законом Ома. Но это можно выполнить на основании первого и второго законов Кирхгофа, являющихся следствием закона сохранения энергии.

Первый закон Кирхгофа

В любом узле электрической цепи алгебраическая сумма токов равна нулю

(1.3)

,

где m – число ветвей подключенных к узлу.

При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус». Например, для узла а (см. рис. 1.2) II 1I 2=0.

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

(1.4)

,

где n – число источников ЭДС в контуре;
m – число элементов с сопротивлением Rk в контуре;
Uk = RkIk – напряжение или падение напряжения на k -м элементе контура.

Для схемы (рис. 1.2) запишем уравнение по второму закону Кирхгофа:

E=UR+U1.

Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контру, включая источники ЭДС равна нулю

(1.5)

.

При записи уравнений по второму закону Кирхгофа необходимо:

1) задать условные положительные направления ЭДС, токов и напряжений;

2) выбрать направление обхода контура, для которого записывается уравнение;

3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны.

Запишем уравнения по II закону Кирхгофа для контуров электрической схемы (рис. 1.2):

контур I: E = RI + R 1 I 1+ r 0 I,

контур II: R 1 I 1+ R 2 I 2=0,

контур III: E = RI + R 2 I 2+ r 0 I.

 

 

Источник ЭДС

Им считается идеальный источник, представляющий собой двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением. На него не влияет нагрузка сети, а внутреннее сопротивление у источника равно нулю.

На схемах он обычно обозначается кругом с буквой «Е» и стрелкой внутри, показывающей положительное направление ЭДС (в сторону увеличения внутреннего потенциала источника).

Источники тока

Ими называют двухполюсники, создающий ток, который является строго постоянной величиной и никак не зависит от значения сопротивления на подключенной нагрузке, а внутреннее сопротивление его приближается к бесконечности. Это тоже теоретическое допущение, которое на практике не может быть достигнуто.

 

Источник ЭДС (идеальный источник напряжения) — двухполюсник, напряжение на зажимах которого постоянно (не зависит от тока в цепи). Напряжение может быть задано как константа, как функция времени, либо как внешнее управляющее воздействие.

В простейшем случае напряжение определено как константа, то есть напряжение источника ЭДС постоянно.

Исто́чник то́ка (также генератор тока) — двухполюсник, который создаёт ток I = Ik, не зависящий от сопротивления нагрузки, к которой он присоединён.

Цепи переменного тока

Переменный ток получил гораздо большее распространение в промышленности и в быту, чем постоянный, так как упрощается конструкция электродвигателей, а синхронные генераторы могут быть выполнены на значительно большие мощности и более высокие напряжения, чем генераторы постоянного тока. Переменный ток позволяет легко изменять величину напряжения с помощью трансформаторов, что необходимо при передаче электроэнергии на большие расстояния.

Электрический ток, возникающий под действием э. д. с, которая изменяется по синусоидальному закону, называют переменным. По существу, переменный ток - это вынужденные колебания тока в электрических цепях.
Амплитудой переменного тока называется наибольшее значение, положительное или отрицательное, принимаемое переменным током.
Периодом называется время, в течение которого происходит полное колебание тока в проводнике.
Частота - величина, обратная периоду.
Фазой называется угол или , стоящий под знаком синуса. Фаза характеризует состояние переменного тока с течением времени. При t=0 фаза называется начальной.
Периодический режим: . К такому режиму может быть отнесен и синусоидальный:

где
- амплитуда;
- начальная фаза;
- угловая скорость вращения ротора генератора.
При f=50Гц T= 1/f=0,02 с, 314рад/с.

График синусоидальной функции называется волновой диаграммой.

Расчет цепей переменного тока с использованием мгновенных значений тока, напряжения и ЭДС требует громоздкой вычислительной работы.

 

 

Поэтому изменяющиеся непрерывно во времени токи, напряжения и ЭДС заменяют эквивалентными во времени величинами.
При расчете электрических цепей синусоидальную функцию выражают по формуле Эйлера через экспоненциальные функции:

где

Тогда

где

- поворотный множитель;
- комплексная амплитуда напряжения;
- сопряженная комплексная амплитуда напряжения.

Таким образом, синусоидальное напряжение можно представить на комплексной плоскости вращающимся вектором. Тогда амплитудное значение напряжения будет представлять собой модуль или длину вектора напряжения.

Активное сопротивление

При прохождении тока через элементы, имеющие активное сопротивление, потери выделяющейся мощности необратимы. Примером может служить резистор, выделяющееся на нем тепло, обратно в электрическую энергию не превращается. Кроме резистора активным сопротивлением может обладать линии электропередач, соединительные провода, обмотки трансформатора или электродвигателя.

Отличительной чертой элементов имеющих чисто активное сопротивление – это совпадение по фазе тока и напряжения, поэтому вычислить его можно по формуле

Активное сопротивление зависит от физических параметров проводника, таких как материал, площадь сечения, длина, температура.

Реактивное сопротивление

При прохождении переменного тока через реактивные элементы возникает реактивное сопротивление. Оно обусловлено в первую очередь ёмкостями и индуктивностями.

Индуктивностью в цепи переменного тока обладает катушка индуктивности, причём в идеальном случае, активным сопротивлением её обмотки пренебрегают. Реактивное сопротивление катушки переменному току создаётся благодаря её ЭДС самоиндукции. Причем с ростом частоты тока, сопротивление также растёт.

Реактивное сопротивление катушки зависит от частоты тока и индуктивности катушки

Конденсатор обладает реактивным сопротивлением благодаря своей ёмкости. Его сопротивление с увеличением частоты тока уменьшается, что позволяет его активно использовать в электронике в качестве шунта переменной составляющей тока.

Сопротивление конденсатора можно рассчитать по формуле

Проверка баланса мощностей

Баланс мощностей является следствием закона сохранения энергии — суммарная мощность вырабатываемая (генерируемая) источниками электрической энергии равна сумме мощностей потребляемой в цепи.

Баланс мощностей используют для проверки правильности расчета электрических цепей.

Здесь мы рассмотрим баланс для цепей постоянного тока.

Например. У нас есть электрическая цепь.

Для проверки правильности решения составляем баланс мощностей.

Источники E1 и E2 вырабатывают электрическую энергию, т.к. направление ЭДС и тока в ветвях с источниками совпадают (если ЭДС и ток в ветвях направлены в противоположную сторону, то источник ЭДС потребляет энергию и его записывают со знаком минус). Баланс мощностей для заданной цепи запишется так:


 

Введение в микроэлектронику. Области применения микроэлектроники

Современное развитие всех областей промышленности характеризуется значительным усложнением задач, возлагаемых на электронную аппаратуру. В этих условиях построение аппаратуры на основе дискретных компонентов (транзисторов, диодов, резисторов, конденсаторов и т.д.) не может удовлетворить предъявляемых к ней требований. Множество компонентов, разветвленность межэлементных соединений, обилие паек, низкая плотность монтажа приводят к значительной трудоемкости изготовления, большим массе и габаритам, высокой стоимости и низкой надежности аппаратуры при таком принципе ее выполнения.

Микроэлектроника — это современное направление электроники, охватывающее конструирование, изготовление и применение электронных узлов, блоков и устройств с высокой степенью миниатюризации. Микроэлектроника решает проблемы существенного повышения надежности, уменьшения массо-габаритных показателей и стоимости электронной аппаратуры.


Поделиться с друзьями:

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.096 с.