Модуль 9. Корреляционный и регрессионный анализы — КиберПедия 

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Модуль 9. Корреляционный и регрессионный анализы

2018-01-03 183
Модуль 9. Корреляционный и регрессионный анализы 0.00 из 5.00 0 оценок
Заказать работу

Цель модуля: Научить студентов узнавать наличие статистических связей между различными случайными количественными характеристиками изучаемых объектов и явлений; оценивать силу этих статистических связей и определять функцию регрессии одной из случайных величин на другую.

В корреляционном анализе рассматриваются статистические зависимости между случайными величинами. При этом решаются две задачи. Первая – оценка силы статистической связи между случайными величинами. Вторая – определение функции, которая описывает тенденцию изменения значений одной из случайных величин при изменении значений другой случайной величины.

Если статистическая зависимость имеет линейный характер, то сила связи оценивается коэффициентом линейной корреляции. Коэффициент линейной корреляции является теоретической числовой характеристикой двумерной случайной величины. Так как при решении практических задач экспериментатор имеет в своём распоряжении только двумерную выборку возможных значений исследуемой случайной величины, то оценка силы связи осуществляется с помощью эмпирического коэффициента линейной корреляции.

Формулаэмпирического коэффициента линейной корреляции получается применением метода моментов определения точечных оценок.

Для решения второй задачи сначала вводится понятие условной случайной величины: и . Определяются законы распределения вероятностей этих условных случайных величин и их условные математические ожидания: и .

Условное математическое ожидание позволяет естественно ввести определение функции регрессии – как функции, описывающей изменение значений условного математического ожидания одной из случайных величин при изменении значений другой случайной величины в области её возможных значений: и .

При выбранном виде функции регрессии вторая задача корреляционного анализа сводится к определению коэффициентов этой функции. Сначала, применяя метод наименьших квадратов, определяем статистические оценки коэффициентов функции регрессии. Коэффициенты функции регрессии, являясь статистиками, выражаются через точечные оценки числовых характеристик двумерной случайной величины. Применяя метод моментов «наоборот», записываем теоретическое уравнение функции регрессии одной случайной величины на другую.

В регрессионном анализе определяется функция регрессии случайной величины на изменение детерминированного параметра. В качестве примера рассматривается «Задача Путина В.В.» об удвоении в течение десяти лет внутреннего валового продукта Российской Федерации.

Определение остаточной дисперсии, с одной стороны, «служит» задачам корреляционного анализа, а с другой стороны, «закладывает фундамент» для решения задач методами дисперсионного анализа.

 


V. Экзаменационные вопросы

 

В каждом экзаменационном билете содержатся названия терминов и понятий теории вероятностей, которым надо дать определения, и два теоретических вопроса. Первый вопрос билета призван проверить знания студента из первой части курса, которая излагается в первых четырёх модулях. Во вторых вопросахбилета проверяются знания классической предельной проблемы теории вероятностей и математической статистики, которые излагаются в следующих пяти модулях.

1. Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: испытания с равновозможными исходами.

2. Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: повторные независимые испытания.

3. Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: испытания до первого положительного исхода.

4. Условная вероятность. Вероятность произведения событий. Зависимые и независимые события.

5. Формула полной вероятности.

6. Формула Байеса.

7. Аксиоматическое построение вероятностной модели. Аксиомы А.Н. Колмогорова.

8. Свойства вероятностной функции.

9. Теорема о непрерывности вероятностной функции. Импликации и .

10. Теорема о непрерывности вероятностной функции. Импликации и .

11. Измеримое пространство < R,B (R)>. Борелевские множества на множестве вещественных чисел.

12. Измеримое пространство < Rn,B (Rn)>. Борелевские множества на плоскости.

13. Вероятностная функция дискретного типа на измеримых пространствах < R,B (R)> и < Rn,B (Rn)>. Примеры.

14. Вероятностная функция непрерывного типа на измеримых пространствах < R,B (R)> и < Rn,B (Rn)>. Примеры.

15. Случайная величина. Типы случайных величин. Функция распределения случайной величины.

16. Случайный вектор. Компоненты случайного вектора. Частные вероятностные функции и частные функции распределения.

17. Функция распределения. Свойства. Примеры функций распределения дискретного типа.

18. Функция распределения. Свойства. Примеры функций распределения непрерывного типа.

19. Многомерная функция распределения. Свойства. Примеры. Свойства согласованности.

20. Независимость компонент случайного вектора. Критерий независимости.

21. Математическое ожидание случайной величины. Определение. Примеры.

22. Математическое ожидание случайной величины. Определение. Свойства.

23. Дисперсия случайной величины. Определение. Примеры.

24. Дисперсия случайной величины. Определение. Свойства.

25. Функции случайных величин. Определение закона распределения функции случайной величины. Примеры.

26. Функция распределения суммы двух независимых случайных величин. Свёртка функций распределения.

27. Начальные и центральные моменты случайной величины.

28. Числовые характеристики случайного вектора. Ковариационный момент. Ковариационная матрица.

29. Коэффициент линейной корреляции. Определение. Свойства.

30. Характеристические функции. Определение Примеры.

31. Характеристические функции. Свойства .

32. Характеристические функции. Свойства .

33. Закон больших чисел. Теорема Бернулли и теорема А.Я. Хинчина. Правило среднего арифметического.

34. Закон больших чисел. Неравенство и теорема П.Л. Чебышёва.

35. Центральная предельная теорема. Теорема Муавра-Лапласа.

36. Центральная предельная теорема. Теорема Леви.Следствия.

37. Центральная предельная теорема. Понятия о теоремах А.М. Ляпунова и Линдебега-Феллера.

38. Закон малых чисел. Теорема Пуассона.

39. Выборка. Первичная обработка статистических данных. Теорема Гливенко.

40. Точечные оценки числовых характеристик случайных величин. Требования к точечным оценкам.

41. Неравенство Рао-Крамера. Эффективность оценки математического ожидания - среднего арифметического элементов выборки.

42. Метод моментов получения точечных оценок числовых характеристик случайных величин.

43. Метод максимального правдоподобия получения точечных оценок числовых характеристик случайных величин.

44. Некоторые специальные распределения, используемые в математической статистике.

45. Интервальные оценки числовых характеристик случайных величин. Доверительный интервал для математического ожидания.

46. Интервальные оценки числовых характеристик случайных величин. Доверительный интервал для дисперсии.

47. Статистическая проверка гипотез. Ошибки первого и второго рода. Три типа задач статистической проверки гипотез.

48. Статистическая проверка гипотезы о равенстве математического ожидания некоторому фиксированному числу.

49. Статистическая проверка гипотезы о равенстве дисперсии некоторому фиксированному числу.

50. Статистическая проверка гипотезы о равенстве дисперсий двух различных случайных величин.

51. Статистическая проверка гипотезы о равенстве математических ожиданий двух различных случайных величин.

52. Статистическая проверка гипотез. Понятия о критериях Колмогорова и Мизеса.

53. Статистическая проверка гипотезы о виде закона распределения случайной величины. Критерий согласия Пирсона.

54. Элементы корреляционного и дисперсионного анализов. Две задачи корреляционного анализа. Статистическая оценка коэффициента линейной корреляции.

55. Условные распределения и условные математические ожидания. Определение функции регрессии.

56. Статистическая оценка коэффициентов линейной функции регрессии методом наименьших квадратов.

57. Остаточная дисперсия при линейной регрессии.

58. Корреляционное отношение – мера силы статистической связи при нелинейной регрессии.

 

Образцы вариантов контрольных работ по теории вероятностей

Контрольная работа №1

 

ВАРИАНТ № образец

1. На девяти карточках написаны цифры 1,2,3,4,5,6,7,8,9. Из них наудачу выбираются две карточки и кладутся на стол в порядке появления. Найти вероятность того, что полученное число делится на семь.

2. Имеются три станка. Каждый из них может работать в данный момент с вероятностью 0,7, 0,8 и 0,9 соответственно. Найти вероятность того, что в данный момент будут работатьтолько два станка.

3. В первой урне имеются три белых и семь чёрных шаров, а во второй – семь белых и три чёрных шара. Из первой урны во вторую наудачу переложен шар, а затем, также наудачу, переложен шар из второй урны в первую. Определить вероятность того, что составы урн после этих перекладываний не изменятся.

4. Станок автомат, выпускающий детали, даёт 5% брака. Существующая система контроля качества 90% процентов бракованных деталей называет бракованными, но, в силу своего несовершенства, 5% доброкачественных деталей объявляет бракованными. Деталь, прошедшая контроль, названа бракованной. Какова вероятность того, что контроль не ошибся?

ВАРИАНТ № образец

1. В урне шесть белых и четыре чёрных шара. Из урны вынимают наудачу пять шаров. Найти вероятность того, что два из них будут белыми, а три – чёрными.

2. В первой партии 45 годных и 5 бракованных деталей, во второй партии 50 годных и 10 бракованных деталей. Наудачу из каждой партии берут по одной детали. Найти вероятность того, что они обе бракованные.

3. Наугад выбираются по одной букве из слов «корова» и «кошка». Найти вероятность того, что эти буквы окажутся одинаковыми.

4. Брошено две монеты. Если выпали два «герба», то из урны №1 извлекается один шар, в противном случае шар извлекается из урны №2. Урна №1 содержит пять чёрных и два белых шара. Урна №2 содержит два чёрныхи пять белых шаров. Какова вероятность того, что шар извлекался из урны №1, если он оказался чёрным?

ВАРИАНТ № образец

1. Игральная кость бросается два раза. Найти вероятность того, что во второй раз выпадет большее число очков, чем в первый раз.

2. В первой урне 10 белых и 15 чёрных шаров, во второй урне 12 белых и 20 чёрных шаров и в третьей 15 белых и 10 чёрных шаров. Из каждой урны наудачу извлекают по два шара. Найти вероятность того, что все вынутые шары одного цвета.

3. Пассажир забыл последнюю цифру шифра в автоматической камере хранения и набирает её наудачу. Определить вероятность того, что для открытия ячейки ему понадобится не более четырёх попыток.

4. В левом кармане пять монет по 50 коп. и три монеты по 10 коп., а в правом кармане четыре монеты по 50 коп. и шесть монет по 10 коп. Из правого кармана в левый наудачу перекладывается одна монета, после чего из левого кармана также наудачу извлекается одна монета, оказавшаяся пятидесятикопеечной. Какова вероятность того, что в левый карман была переложена десятикопеечная монета?

Контрольная работа №2

ВАРИАНТ № образец

1. Из колоды карт (52 шт.) наудачу без возвращения извлекаются восемь карт. Постройте ряд распределения и определите мат. ожидание случайного числа появившихся красных картинок. Чему равна вероятность того, что число этих картинок - чётное?

2. При каком значении параметра а функция:

 

 

будет плотностью вероятности случайной величины x. Найти функцию распределения F(x), математическое ожидание Мx. Чему равна вероятность случайного события ?Сделать чертёж.

ВАРИАНТ № образец

1. Две игральных кости одновременно подбрасывают шесть раз. Постройте ряд распределения случайного числа появлений хотя бы одной шестёрки на верхних гранях брошенных костей. Чему равно мат. ожидание этого случайного числа?

2. При каком значении параметра а функция:

 

 

будет плотностью вероятности случайной величины x. Найти математическое ожидание Мx. Чему равна вероятность случайного события ?Сделать чертёж.

ВАРИАНТ № образец

1. Баскетболист бросает мяч в корзину до первого попадания, но ему разрешается сделать не более пяти попыток. Постройте ряд распределения случайного числа сделанных промахов. Чему равна вероятность того, что число сделанных промахов будет нечётным, если вероятность попадания при одном броске у этого баскетболиста равна ?

2. При каком значении параметра а функция:

 

 

будет плотностью вероятности случайной величины x. Найти функцию распределения F(x), математическое ожидание Мx. Чему равна вероятность случайного события ?Сделать чертёж.

 


Контрольная работа №3

ВАРИАНТ № образец

1. На одной из сторон правильного треугольника, длина стороны которого равна а, наудачу ставится точка. Через эту точку, параллельно двум другим сторонам треугольника, проводятся две прямые. Определите математическое ожидание и дисперсию величины площади получившегося параллелограмма.

2. В урне находятся один белый, два красных и три чёрных шара. Наудачу без возвращения извлекаются три шара. Для случайных чисел появившихся шаров белого и красного цвета постройте таблицу распределения вероятностей. Найти частные распределения компонент получившегося вектора.

3. Случайная величина является средней арифметической 3600 независимых одинаково распределённых случайных величин, у каждой из которых математическое ожидание равно трём, а дисперсия – двум. Каким должно быть , чтобы суверенностью не менее, чем 0,95 можно было утверждать, что значения отклонятся от меньше, чем на ?

ВАРИАНТ № образец

1. На окружности радиуса r наудачу ставится точка. Из этой точки параллельно горизонтальному и вертикальному диаметрам проводятся две хорды, которые берутся в качестве сторон прямоугольника. Две другие стороны прямоугольника, проводятся параллельно этим хордам. Определите математическое ожидание и дисперсию величины площади получающегося прямоугольника.

2. В первой урне находятся два белых и три чёрных шара. Во второй урне – три белых и два чёрных шара. Из первой урны во вторую наудачу перекладывается один шар, а затем из второй урны сразу извлекаются два шара. Для двумерной случайной величины – число переложенных и число извлечённых шаров белого цвета построить таблицу распределения. Найти частные распределения компонент.

3. С какой уверенностью можно ожидать, что при 900 подбрасываниях игральной кости значение относительной частоты выпадений нечётного числа очков отклонится отвероятности менее чем на 0,015?

ВАРИАНТ № образец

1. По сторонам прямого угла образованного координатными осями, концами скользит линейка длиною l. Все значения координаты её правого конца на оси абсцисс – равновозможные. Найдите математическое ожидание величины расстояния от линейки до начала координат.

2. В урне находятся один белый, два красных и три чёрных шара. Наудачу с возвращением каждый раз извлекаются два шара. Для случайных чисел появившихся шаров белого и красного цвета постройте таблицу распределения вероятностей.

3. Вероятность появления события в каждом из независимых испытаний равна 0,8. Сколько нужно произвести испытаний, чтобы с уверенностью не меньшей чем 0,95 можно было утверждать, что число наступлений события будет не менее 80?

 


VI.Индивидуальные задания по математической статистике

Методические указания

Для лучшего усвоения приёмов и методов математической статистики каждый студент получает индивидуальное задание.

Это задание представляет собой наборы статистических данных, полученных экспериментальным путём, и являются выборками значений двумерных случайных величин. В ходе выполнения работы студент должен выполнить следующие пять заданий, соответствующим пяти модулям теоретического курса.


Поделиться с друзьями:

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.045 с.