Выполнить до первого практического занятия — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Выполнить до первого практического занятия

2018-01-03 241
Выполнить до первого практического занятия 0.00 из 5.00 0 оценок
Заказать работу

Задание по биологии.

Выполнить до первого практического занятия

Сделать конспект от руки в тетради раздела «Основы цитологии»

Всего 45 страниц печатного текста

Составить словарь биологических терминов

Раздел I. ОСНОВЫ ЦИТОЛОГИИ

Глава 1. Введение в общую биологию

Многообразие органического мира и комплекс биологических наук

Общие сведения

Наука о живой природе называется биологией (от греч. биос – жизнь и логос – учение). Сам термин «биология» был введен в научный обиход французским естествоиспытателем и эволюционистом Жаном Батистом Ламарком в 1802 г.

Раскрытие общих свойств живых организмов и объяснение причин их многообразия, выявление связей между их строением и условиями окружающей среды относятся к основным задачам биологии. Важное место в этой науке занимают вопросы возникновения жизни на Земле и законы ее развития.

Для живой природы характерно необычайное разнообразие форм. В настоящее время обнаружено и описано примерно 500 тыс. видов растений, более 1,5 млн видов животных, сотни тысяч видов грибов, более 3 тыс. видов разнообразных бактерий и 1 тыс. вирусов. Число еще не описанных видов оценивается в 1–2 млн. Все это многообразие организмов изучается комплексом биологических дисциплин.

Современную биологию, изучающую живую природу как особую форму движения материи, можно разделить на отдельные дисциплины. Подходы к этому делению могут быть разнообразными. Рассмотрим лишь некоторые из них.

По объектам исследования

Вирусология, занимающаяся изучением вирусов; микробиология, изучающая царство бактерий и микроскопические грибы; ботаника, исследующая строение и жизнедеятельность представителей царства растений; зоология, предметом изучения которой являются животные; микология, занимающаяся изучением грибов; и др.

В соответствии с уровнем организации

Молекулярная биология; цитология – учение о клетке; гистология – учение о тканях; и др.

Агробиология, биология охраны природы, инженерная биология и др.

 

Предмет и задачи общей биологии

Биологические науки, изучающие жизнь во всех ее проявлениях, весьма разнообразны. Среди них выделяются науки, изучающие общие свойства живых организмов: закономерности наследования признаков (генетика), пути превращения органических молекул (биохимия), взаимоотношения организмов со средой обитания (экология) и др. Общая биология, таким образом, изучает общие закономерности, присущие всему живому.

Значение биологии

Познание законов функционирования живых организмов позволяет не только составить точную картину мира, но и использовать их для практических целей. Назовем основные области практического применения биологических знаний:

· в сельском хозяйстве – выведение новых пород домашних животных и сортов культурных растений, создание биологических методов борьбы с вредителями сельскохозяйственных культур и др.;

· в фармакологии – использование различных биологических объектов и веществ, ими синтезируемых, в качестве лекарственных препаратов и др.;

· в пищевой промышленности – выращивание используемых в пищу организмов из одной клетки, создание различных биодобавок и др.;

· в медицине, психологии и социологии – биология является научной теоретической базой;

· в деле охраны природы – все связи человечества с окружающей средой должны строиться на основе знания законов функционирования экологических систем и биосферы в целом.

Мы перечислили далеко не все возможные области применения биологических знаний на практике. Очевидно, что в дальнейшем практическое значение биологии еще больше возрастет.

 

Биологические системы и их свойства

Глава 2. ХИМИЧЕСКАЯ ОРГАНИЗАЦИЯ ЖИЗНИ

Элементарный и молекулярный состав живого вещества

Неорганические вещества

Содержание воды в клетке

Вода – одно из самых распространенных веществ на Земле, она покрывает большую часть земной поверхности и входит в состав всех живых организмов.

Вода составляет почти 80% массы клетки (в головном мозге – 85%, в клетках развивающегося зародыша – 90%). Две трети массы человека составляет вода. Человек может прожить без воды не более 14 дней. Потеря организмом 20% воды может привести к смерти. Однако, не все клетки организмов содержат одинаковое количество воды. Так, в клетках эмали зубов воды около 10%, столь же немного ее в клетках покоящихся семян. В клетках молодого организма воды – около 80%, а в клетках старого – только 60%. Приведенные данные позволяют сделать вывод: чем больше воды в клетке, тем интенсивнее в ней идут обменные процессы.

 

Биологическое значение воды

Роль воды в клетках и в организмах велика. Рассмотрим ее биологические функции, исходя из физических и химических свойств этого уникального вещества.

1. Вода способна к когезии, т.е. к сцеплению своих молекул под действием сил притяжения. Вода способна слипаться сама с собой и с другими веществами (можно, например, воду налить в стакан «с верхом» и она не прольется). Это возможно благодаря поверхностному натяжению воды, из-за которого ее поверхность как бы покрыта «кожицей». Эти физические особенности воды позволяют ей выполнять важную биологическую функцию – определение физических свойств клетки: ее объема и упругости (тургесцентностъ). У круглых червей вода полостной жидкости играет роль гидростатического скелета, выполняя опорную функцию.

2. Способность воды к адгезии. Ее свойство притягиваться любой поверхностью, несущей электрический заряд, позволяет ей подниматься по мелким порам в почве и по сосудам ксилемы у растений на большую высоту.

Структура воды

3. Силы сцепления между молекулами воды обеспечивают ее вязкость, поэтому вода является смазывающим веществом в биологических системах. Например, синовиальная жидкость в суставах позвоночных.

4. Вода – хороший растворитель ионных (полярных), а также некоторых неионных соединений, в молекулах которых присутствуют заряженные (полярные) группы. Любые полярные соединения в воде гидратируются (окружаются молекулами воды), при этом молекулы воды участвуют в образовании структуры молекул органических веществ. Если энергия притяжения молекул воды к молекулам какого-либо вещества больше, чем энергия притяжения между молекулами самого вещества, то вещество растворяется в воде. По отношению к воде различают: гидрофильные вещества (от греч. гидрос – вода и филео – любить), хорошо растворимые в воде, и гидрофобные вещества (от греч. гидрос и фобос – страх), практически нерастворимые в воде.

В молекулах гидрофильных веществ преобладают полярные группы (–ОН; С=О; –СООН; –NH2), которые способны устанавливать с молекулами воды водородные связи. Гидрофильными свойствами обладают соли, кислоты, щелочи, белки, углеводы.

Гидрофобные вещества имеют неполярные молекулы, которые отталкиваются молекулами воды. В воде не растворяются жиры, бензин, полиэтилен и другие вещества.

Свойство воды как растворителя имеет большое значение для живых организмов, так как большинство биохимических реакций может идти только в водном растворе. Кроме того, в качестве растворителя вода обеспечивает как приток веществ в клетку, так и удаление из нее продуктов жизнедеятельности.

5. Подвижность молекул воды объясняется тем, что водородные связи, связывающие соседние молекулы, слабы, что и приводит к постоянным столкновениям ее молекул в жидкой фазе. Молекулярная подвижность воды позволяет осуществляться осмосу (диффузии, направленному движению молекул через полупроницаемую мембрану в более концентрированный раствор), необходимому для поглощения и движения воды в живых системах.

6. Среди самых распространенных в природе жидкостей вода имеет наибольшую теплоемкость, поэтому у нее высокая температура кипения (100°С) и низкая температура замерзания (0 °С). Подобные свойства воды позволили ей стать главной составляющей внутриклеточных и внутриорганизменных жидкостей. Правда, температура замерзания воды несколько выше, чем было бы идеально для жизни, так как на Земле обширные территории имеют температуры ниже 0 °С. Если кристаллы льда образуются в живом организме, то они могут разрушить его тонкие внутренние структуры и вызвать его гибель. У озимой пшеницы, у ряда насекомых, у лягушек в организме есть природные антифризы, предотвращающие образование льда в их клетках.

7. «Необычная» плотность и «поведение» воды вблизи точки замерзания приводят к тому, что лед плавает на поверхности водоемов, создавая изолирующий слой, который при низких температурах защищает водных обитателей и водоем от полного промерзания.

8. Вода обладает большой удельной теплотой парообразования, поэтому, испаряясь, вода способствует охлаждению тела (при испарении 1 г воды тело теряет 2430 Дж энергии). Известно, что за день тяжелой работы человек теряет до 10 л пота. Если бы пот во время работы не выделялся и не испарялся, то организм «нагрелся» бы до 100 С. Испарение воды с поверхности листьев растений в ходе транспирации также способствует охлаждению.

9. Вода является реагентом во многих химических реакциях. Например, гидролитическое расщепление белков, углеводов, жиров и т.д. Вода играет роль источника кислорода, выделяемого при фотосинтезе, и водорода, который используется для восстановления продуктов ассимиляции углекислого газа.

10. Большая теплоемкость и теплопроводность воды способствует равномерному распределению тепла в клетке и в организме.

Таким образом, вода – самая удивительная жидкость на Земле, свойства которой превосходят всякую фантазию. Уникальные свойства воды позволяют ей выполнять не менее уникальные биологические функции.

 

Содержание солей в клетке

В клетке содержится 1–1,5% минеральных солей. Соли – соединения ионные, т.е. в их составе атомы с частично приобретенным положительным и отрицательным зарядом. В воде соли легко растворяются и распадаются на ионы, т.е. диссоциируют с образованием катиона металла и аниона кислотного остатка. Например:

NaCl ––> Na+ + Сl;

Н3РO4 ––> 2H+ + НРO42–;

Н3РO4 ––> H+ + Н2РO4.

Поэтому мы говорим, что соли содержатся в клетке в виде ионов. В наибольшей степени в клетке представлены и имеют наибольшее значение

катионы: К+, Na+, Са2+, Mg2+;

анионы: НРО42–, H2РО4, Сl, НСО3, HSO4.

Есть в живых тканях и соли, находящиеся в твердом состоянии, – например, фосфат кальция, входящий в состав межклеточного вещества костной ткани, в раковины моллюсков.

 

 

Содержание липидов в клетке и в организме

Липиды – обширная группа природных органических веществ. Название их происходит от греческого слова липос – жир, так как они включают жиры (собственно липиды) и жироподобные вещества (липоиды). В каждой клетке животного или растительного организма содержится вполне определенное количество липидов.

Животные жиры содержатся в молоке, мясе, подкожной клетчатке, у растений – в семенах, плодах и других органах. Растительные жиры называются маслами.

В среднем содержание жира в клетках – около 5–10% от массы сухого вещества. Существуют, однако, клетки, содержание жира в которых достигает почти 90% от сухой массы. Эти наполненные жиром клетки имеются в жировой ткани.

Свободный жир можно условно разделить на две большие группы: протоплазматический (конституционный) и резервный.

Протоплазматический жир участвует в построении каждой клетки. Он входит в состав мембранных внутриклеточных структур. Количество протоплазматического жира постоянно и практически не меняется ни при каких состояниях организма. Например, у человека протоплазматический жир составляет около 25% всего жира, находящегося в организме.

Резервный жир представляет собой очень удобную форму консервирования энергии. Это связано с тем, что калорийность жира почти в два раза выше калорийности белков и углеводов. Количество резервного жира может меняться в зависимости от различных условий (пол, возраст, характер активности, режим питания и т.д.). У человека депо жира являются подкожная клетчатка, сальник, околопочечная капсула и др.

Богаты жиром клетки мозга, спермы, яичников – в них его количество составляет 7,5–30%.

В организме наряду со свободным жиром имеется большое количество жира, связанного с углеводами и белками.

 

Строение и свойства липидов

Схема строения жиров

Липиды – органические соединения с различной структурой, но общими свойствами. По химической структуре жиры представляют собой сложные эфиры трехатомного спирта глицерина и высокомолекулярных жирных кислот.

R1, R2, R3 – это радикалы жирных кислот. Из них чаще всего встречаются пальмитиновая [СН3–(СН2)15–СООН], стеариновая [СН3–(СН2)16–СООН], олеиновая [CH3–(CH2)7–СН = СН–(СН2)7–СООН] жирные кислоты. Все жирные кислоты делятся на две группы: насыщенные, т.е. не содержащие двойных связей, и ненасыщенные, или непредельные, содержащие двойные связи.

Из приведенных выше формул видно, что к насыщенным кислотам принадлежат пальмитиновая и стеариновая кислоты, а к ненасыщенным – олеиновая. Свойства жиров определяются качественным составом жирных кислот и их количественным соотношением. Растительные жиры богаты непредельными жирными кислотами, они являются легкоплавкими – жидкими при комнатной температуре. Животные жиры при комнатной температуре твердые, так как содержат главным образом насыщенные жирные кислоты.

Из формулы жира видно, что его молекула, с одной стороны, содержит остаток глицерина – вещества, хорошо растворимого в воде, а с другой – остатки жирных кислот, неполярные углеводородные цепочки которых в воде практически нерастворимы (атомы углерода и водорода притягивают электроны с приблизительно равной силой). Неполярные цепи жирных кислот поэтому тяготеют к неполярным органическим веществам (хлороформ, эфир, масло). Благодаря этой особенности молекулы липидов располагаются на поверхности раздела между водой и неполярными органическими соединениями или между водой и воздушной фазой, ориентируясь таким образом, чтобы их полярные части были обращены к воде.

Такая ориентация молекул липидов по отношению к воде играет очень важную роль. Тончайший слой этих веществ, входящий в состав клеточных мембран, препятствует смешиванию содержимого клетки или отдельных ее частей с окружающей средой.

Таким образом, липиды – небольшие молекулы с преобладанием гидрофобных свойств.

 

Классификация липидов

В живых организмах встречаются разные липиды. По особенностям строения выделяют несколько групп липидов.

1. Простые липиды (жиры, воска). Их молекулы состоят из жирных кислот в соединении с глицерином – жиры или другими одноатомными спиртами – воска. Воска образуют защитную смазку на коже, шерсти и перьях, покрывают листья и плоды высших растений, а также кутикулу наружного скелета у многих насекомых. Эти вещества очень гидрофобны.

2. Сложные липиды – состоят из глицерина, жирных кислот и других компонентов. К этой группе относятся: фосфолипиды (производные ортофосфорной кислоты, входят в состав всех клеточных мембран); гликолипиды (содержат остатки сахаров, их много в нервной ткани); липопротеиды (комплексы липидов с белками).

3. Стероиды – небольшие гидрофобные молекулы, являющиеся производными холестерина. К ним относятся многие важные гормоны (половые гормоны и гормоны коркового слоя надпочечников), терпены (эфирные масла, от которых зависит запах растений), некоторые пигменты (хлорофилл, билирубин), часть витаминов (А, D, Е, К) и др.

 

Содержание углеводов в живой материи

Углеводы – самые распространенные на Земле органические вещества. Они содержатся в клетках всех живых организмов. Название «углеводы» произошло потому, что первые известные вещества этого класса состояли как бы из углерода и воды. Общая их формула Сn(Н2O)m. У большинства углеводов число атомов водорода в 2 раза превышает количество атомов кислорода. Позднее были найдены углеводы, не отвечающие этой общей формуле, но название «углеводы» сохранилось.

В животных клетках углеводов немного: 1–2, иногда до 5% (например, в клетках печени). Растительные клетки, напротив, богаты углеводами – там их содержание достигает 90% сухой массы.

 

Образование пептидной связи

Связь, изображенная слева, называется пептидной (от греч. пепсис – пищеварение). Этот термин напоминает нам о том, что эта связь гидролизуется пищеварительным ферментом желудочного сока пепсином. По природе пептидная связь является ковалентной.

Соединение двух аминокислот называется дипептидом, трех – трипептидом и т.д. Примером трипептида может служить белок глютатион, состоящий из остатков глицина, цистеина и глютаминовой кислоты. Он содержится во всех живых клетках (особенно много его в зародыше пшеничного зерна и дрожжах) и активно участвует в обмене веществ.

 

Глютатион

 

В основном же белки, входящие в состав живых организмов, включают в себя сотни и тысячи аминокислот (чаще всего от 100 до 300), поэтому их называют полипептидами. Аминокислоты в составе белковой полипептидной цепи называют аминокислотными остатками.

Пептиды различаются числом (n), природой, порядком или последовательностью своих аминокислотных остатков. Их можно сравнить со словами разной длины, в написании которых использован алфавит, состоящий из 20 букв. Из 20 аминокислот можно теоретически получить 1020 возможных вариантов цепей, длиной каждая не менее чем 10 аминокислотных остатков. Белки же, выделенные из живых организмов, образованы сотнями, а иногда и тысячами аминокислотных остатков. В этом кроется источник бесконечного разнообразия белковых молекул, что является важной предпосылкой эволюционного процесса.

 

Классификация белков

Сложность строения белковых молекул и чрезвычайное разнообразие их функций крайне затрудняет создание единой четкой классификации белков на какой-либо одной основе. Поэтому рассмотрим несколько классификаций белков.

1. Классификация белков по составу.

Простые белки (протеины) – состоят только из аминокислот (альбумины, глобулины, гистоны, склеропротеины).

Сложные белки (протеиды) – состоят из глобулярных белков и небелкового материала. Небелковую часть называют простетической группой (фосфопротеиды, гликопротеиды, нуклеопротеиды, хромопротеиды, липопротеиды, металлопротеиды, флавопротеиды).

2. Классификация белков по функциям.

 

Нуклеиновые кислоты

Содержание в клетке, размеры молекул и молекулярная масса

Нуклеиновые кислоты составляют 1— 5%сухой массы клетки и представлены моно- и полинуклеотидами. Мононуклеотид состоит из одного пуринового (аденин — А, гуанин — Г) или пиримидинового (цитозин — Ц, тимин — Т, урацил — У) азотистого основания, пятиуглеродного сахара (рибоза или дезоксирибоза) и 1—3 остатков фосфорной кислоты.

Название нуклеотидов определяется видом основания и пентозы, входящих в их состав (адениловый рибонуклеотид, тимидиловый дезоксирибонуклеотид). В зависимости от числа фосфатных групп различают моно-, ди- и трифосфаты нуклеотидов, например аденозинмонофосфат — АМФ, гуанозиндифосфат — ГДФ, уридинтрифосфат — УТФ, тимидинтрифосфат — ТТФ и т.д.

Эти органические соединения были открыты в 1869 г. швейцарским врачом И.Ф. Мишером в клетках, богатых ядерным материалом (лейкоцитах, сперматозоидах лосося). Нуклеиновые кислоты являются составной частью клеточных ядер, поэтому они и получили такое название (от лат. nucleus – ядро). Помимо ядра нуклеиновые кислоты встречаются также в цитоплазме, центриолях, митохондриях, хлоропластах.

В природе наиболее важная роль нуклеотидов состоит в том, что они служат строительными блоками для сборки полинуклеотидов: РНК и ДНК (рибонуклеиновых и дезоксирибонуклеиновых кислот). Они различаются по составу, строению и функциям. ДНК имеет двухцепочечную молекулу, а РНК – одноцепочечную.

Нуклеиновые кислоты – биополимеры, достигающие огромных размеров. Длина их молекул равна сотням тысяч нанометров (1 нм =10–9 м), это в тысячи раз больше длины белковых молекул. Особенно велика молекула ДНК.

Таблица 7. Состав нуклеотидов ДНК и РНК

Дезоксирибонуклеотиды Рибонуклеотиды
Адениловый (А) Гуаниловый (Г, G) Тимидиловый (Т) Цитозиловый (Ц, С) Адениловый (А) Гуаниловый (Г, G) Уридиловый (У, U) Цитозиловый (Ц, С)

Рассмотрим строение нуклеотида. Нуклеотиды – сложные органические соединения, включающие в себя три компонента. Схема строения нуклеотида ДНКи РНК приведена на рисунке.

 

1. Азотистые основания имеют циклическую структуру, в состав которой наряду с атомами углерода входят атомы других элементов, в частности азота. За присутствие в этих соединениях атомов азота они и получили название «азотистые», а поскольку обладают щелочными свойствами – «основания». Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания являются производными пиримидина, имеющего в составе своей молекулы одно кольцо. В составе дезоксирибонуклеотидов обнаруживаются пиримидиновые основания тимин и цитозин, а в составе рибонуклеотидов – цитозин и урацил. Урацил отличается от тимина отсутствием метильной группы (–СН3).

 

Пиримидиновые основания

 

 

Пуриновые основания

Пуриновые основания являются производными пурина, имеющего два кольца. К пуриновым основаниям относятся аденин и гуанин. Они входят в состав нуклеотидов как ДНК, так и РНК.

По содержащемуся азотистому основанию нуклеотиды и получили свое название. Например, нуклеотид, содержащий азотистое основание тимин называется тимидиловым, урацил – уридиловым и т.д. Азотистые основания и нуклеотиды в целом принято обозначать заглавными русскими или латинскими начальными буквами.

2. Углевод – пентоза (C 5 ). Этот компонент также принимает участие в образовании нуклеотидов. В составе нуклеотидов ДНК содержится пентоза – дезоксирибоза, а в составе нуклеотидов РНК – рибоза. Углеводный состав нуклеотидов отражен, как мы видим, в названиях нуклеиновых кислот: дезоксирибонуклеиновая и рибонуклеиновая. Соединения пентозы с азотистым основанием получили название «нуклеозиды».

3. Остаток фосфорной кислоты. Фосфат придает нуклеиновым кислотам кислые свойства.

Итак, нуклеотид состоит из азотистого основания, пентозы и фосфата. В составе нуклеотидов с одной стороны к углеводу присоединено азотистое основание, а с другой – остаток фосфорной кислоты

 

 

Образование первичной структуры ДНК

Таким образом, скелет полинуклеотидной цепочки углеводно-фосфатный, т.к. нуклеотиды соединяются друг с другом путем образования ковалентных связей (фосфодиэфирных мостиков), в которых фосфатная группа образует мостик между С3-атомом одной молекулы сахара и С5-атомом следующей. Прочные ковалентные связи между нуклеотидами уменьшают риск «поломок» нуклеиновых кислот.

Если в составе полинуклеотида, образованного четырьмя типами нуклеотидов, 1000 звеньев, то количество возможных вариантов его состава 41000 (это цифра с 6 тыс. нулей). Поэтому всего четыре типа нуклеотидов могут обеспечить огромное разнообразие нуклеиновых кислот и той информации, которая содержится в них.

 

Образование двухцепочечной молекулы ДНК

В 1950 г. английский физик Морис Уилкинс получил рентгенограмму ДНК. Она показала, что молекула ДНК имеет определенную структуру, расшифровка которой помогла бы понять механизм ее функционирования. Рентгенограммы, полученные на высокоочищенной ДНК, позволили Розалинд Франклин увидеть четкий крестообразный рисунок – опознавательный знак двойной спирали. Стало известно, что нуклеотиды расположены друг от друга на расстоянии 0,34 нм, а на один виток спирали их приходится 10.

Диаметр молекулы ДНК составляет около 2 нм. Из рентгенографических данных, однако, было не ясно, каким образом две цепи удерживаются вместе.

Картина полностью прояснилась в 1953 г., когда американский биохимик Джеймс Уотсон и английский физик Фрэнсис Крик, рассмотрев совокупность известных данных о строении ДНК, пришли к выводу, что сахарофосфатный остов находится на периферии молекулы ДНК, а пуриновые и пиримидиновые основания – в середине.

 

Сахарофосфатный остов ДНК

Д.Уотсон и Ф.Крик установили, что две полинуклеотидные цепи ДНК закручены вокруг друг друга и вокруг общей оси. Цепи ДНК – антипараллельны (разнонаправлены), т.е. против 3'-конца одной цепи находится 5'-конец другой (представьте себе двух змей скрутившихся в спираль, – голова одной к хвосту другой). Спираль обычно закручена вправо, но есть случаи образования и левой спирали.

 

РНК и ее значение

Основу жизни образуют белки. Функции их в клетке очень разнообразны. Однако белки «не умеют» размножаться. А вся информация о строении белков содержится в генах (ДНК).

У высших организмов белки синтезируются в цитоплазме клетки, а ДНК сокрыта за оболочкой ядра. Поэтому ДНК непосредственно не может быть матрицей для синтеза белка. Эту роль выполняет другая нуклеиновая кислота – РНК.

Молекула РНК представляет собой неразветвленный полинуклеотид, обладающий третичной структурой. Она образована одной полинуклеотидной цепочкой, и, хотя входящие в ее состав комплементарные нуклеотиды также способны образовывать между собой водородные связи, эти связи возникают между нуклеотидами одной цепочки. Цепи РНК значительно короче цепей ДНК. Если содержание ДНК в клетке относительно постоянно, то содержание РНК сильно колеблется. Наибольшее количество РНК в клетках наблюдается во время синтеза белка.

РНК принадлежит главная роль в передаче и реализации наследственной информации. В соответствии с функцией и структурными особенностями различают несколько классов клеточных РНК.

 

Отличия молекул ДНК и РНК

Признаки сравнения ДНК РНК
Расположение в клетке Ядро, митохондрии, хлоропласты Ядро, рибосомы, центриоли, цитоплазма, митохондрии и хлоропласты
Строение макромолекулы Двойной неразветвленный линейный полимер, свернутый в спираль Одинарная полинуклеотидная цепь
Мономеры Дезоксирибонуклеотиды Рибонуклеотиды
Состав нуклеотидов Пуриновые (аденин, гуанин) и пиримидиновые (тимин, цитозин) азотистые основания; дезоксирибоза (С5); остаток фосфорной кислоты Пуриновые (аденин, гуанин) и пиримидиновые (урацил, цитозин) азотистые основания; рибоза (С5); остаток фосфорной кислоты
Функции Хранитель наследственной информации Посредник в реализации генетической информации

 

СТРОЕНИЕ КЛЕТКИ

История цитологии тесно связана с изобретением, использованием и усовершенствованием микроскопа. С момента первого описания англичанином Р. Гуком (1665) целлюль, или клеток, в тонком срезе пробковой ткани дерева накопилось огромное количество сведений, фактов и доказательств клеточного состава растений, животных и микроорганизмов.

Одним из крупнейших обобщений XIX в. стала клеточная теория, изложенная в трудах Т. Шванна, М. Шлейдена и Р. Вирхова. В XIX—XX вв. благодаря применению более современных методов цитологического анализа были получены новые данные, позволившие подтвердить, уточнить и дополнить клеточную теорию.

Современная клеточная теория включает следующие положения: — все живые организмы состоят из клеток (исключение составляют вирусы); клетки одноклеточных и многоклеточных животных и растительных организмов сходны (гомологичны) по строению, химическому составу, принципам обмена веществ и основным проявлениям жизнедеятельности; именно клетка обладает всей совокупностью черт, характеризующих живое. Клеткаэлементарная структурная, функциональная и генетическая единица живого;

— все живые организмы развиваются из одной или группы клеток; каждая новая клетка образуется в результате деления исходной (материнской) клетки. Клеткаэлементарная единица развития живого;

— в сложных многоклеточных организмах клетки дифференцируются, специализируясь по выполнению определенной функции; клетки объединены в ткани и органы, функционально связанные в системы, и находятся под контролем межклеточных, гуморальных и нервных форм регуляции. Клеткафункциональная единица в многоклеточном организме.

Клетка — это элементарная живая система, способная к самообновлению, саморегуляции и самовоспроизведению.

Типы клеточной организации

Среди всего многообразия ныне существующих на Земле организмов выделяют две группы: вирусы и фаги, не имеющие клеточного строения; все остальные организмы представлены разнообразными клеточными формами жизни. Различают два типа клеточной организации: прокариотический и эукариотический.

Большинство современных живых организмов относится к одному из трех царств — растений, грибов и животных, объединяемых в надцарство эукариот.

В зависимости от количества клеток, из которых состоят организмы, последние делят на одноклеточные и многоклеточные. Одноклеточные организмы состоят из одной-единственной клетки, выполняющей функции целостного организма. Многие из этих клеток устроены гораздо сложнее, чем клетки многоклеточного организма. Одноклеточными являются все прокариоты, а также простейшие, некоторые зеленые водоросли и грибы.

Тело многоклеточных организмов состоит из множества клеток, объединенных в ткани, органы и системы органов. Клетки многоклеточного организма специализированы для выполнения определенной функции и могут существовать вне организма лишь в микросреде, близкой к физиологической (например, в условиях культуры тканей). Клетки в составе многоклеточного организма различаются по размерам, форме, структуре и выполняемым функциям. Несмотря на индивидуальные особенности, все клетки построены по единому плану и имеют много общих черт.

Типичная эукариотическая клетка состоит из трех компонентов: оболочки, цитоплазмы и ядра.

 

Органоиды клетки

Органоиды (органеллы) — постоянные клеточные структуры, обеспечивающие выполнение клеткой специфических функций. Каждый органоид имеет определенное строение и выполняет определенные функции.

Различают: мембранные органоиды — имеющие мембранное строение, причем они могут быть одномембранными (эндоплазматический ретикулум, аппарат Гольджи, лизосомы, вакуоли растительных клеток) и двумембранными (митохондрии, пластиды, ядро).

Кроме мембранных могут быть и немембранные органоиды — не имеющие мембранного строения (хромосомы, рибосомы, клеточный центр и центриоли, реснички и жгутики с базальными тельцами, микротрубочки, микрофиламенты).

 

Одномембранные органоиды:

1. Эндоплазматический ретикулум (ЭПР). Представляет собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПР. Мембраны с одной стороны связаны с наружной цитоплазматической мембраной, с другой — с наружной оболочкой ядерной мембраны. Различают два вида ЭПР: шероховатый (гранулярный), содержащий на своей поверхности рибосомы и представляющий собой совокупность уплощенных мешочков, и гладкий (агранулярный), мембраны которого рибосом не несут.

Функции: разделяет цитоплазму клетки на изолированные отсеки, обеспечивая тем самым пространственное отграничение друг от друга множества параллельно идущих различных реакций, Осуществляет синтез и расщепление углеводов и липидов (гладкий ЭПР) и обеспечивает синтез белка (шероховатый ЭПР), накапливает в каналах и полостях, а затем транспортирует к органоидам клетки продукты биосинтеза.

2. Аппарат Гольджи. Органоид, обычно расположенный около клеточного ядра (в животных клетках часто вблизи клеточного центра). Представляет собой стопку уплощенных цистерн с расширенными краями, с которой связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4—6 цистерн. Число стопок Гольджи в клетке колеблется от одной до нескольких сотен.

Важнейшая функция комплекса Гольджи — выведение из клетки различных секретов (ферментов, гормонов), поэтому он хорошо развит в секреторных клетках. Здесь происходит синтез сложных углеводов из простых сахаров, созревание белков, образование лизосом.

3. Лизосомы. Самые мелкие одномембранные органоиды клетки, представляющие собой пузырьки диаметром 0,2—0,8 мкм, содержащие до 60 гидролитических ферментов, активных в слабокислой среде.

Образование лизосом происходит в аппарате Гольджи, куда из ЭПР поступают синтезированные в нем ферменты. Расщепление веществ с помощью ферментов называют лизисом, отсюда и название органоида.

Различают: первичные лизосомы — лизосомы, отшнуровавшиеся от аппарата Гольджи и содержащие ферменты в неактивной форме, и вторичные лизосомы — лизосомы, образовавшиеся в результате слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями; в них происходит переваривание и лизис, поступивших в клетку веществ (поэтому часто их называют пищеварительными вакуолями).

Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Иногда с участием лизосом происходит саморазрушение клетки. Этот процесс называют автолизом. Обычно это происходит при некоторых процессах дифференцировки (например, замена хрящевой ткани костной, исчезновение хвоста у головастика лягушек).

4. Реснички и жгутики. Образованы девятью сдвоенными микротрубочками, образующими стенку цилиндра, покрытого мембраной; в его центре находятся две одиночные микротрубочки. Такая структура типа 9+2 характерна для ресничек и жгутиков почти всех эукариотических организмов, от простейших до человека.

Реснички и жгутики укреплены в цитоплазме базальными тельцами, лежащими в основании этих органоидов. Каждое базальное тельце состоит из девяти троек микротрубочек, в его центре микротрубочек нет.

5. К одномембранным органоидам относятся также и вакуоли, окруженные мембраной — тонопластом. В растительных клетках могут занимают до 90% объема клетки и обеспечивают поступление воды в клетку за счет высокого осмотического потенциала и тургор (внутриклеточное давление). В животных клет


Поделиться с друзьями:

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.133 с.