Уравнения движения и скорости точек плоской фигуры — КиберПедия 

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Уравнения движения и скорости точек плоской фигуры

2017-12-21 1370
Уравнения движения и скорости точек плоской фигуры 0.00 из 5.00 0 оценок
Заказать работу

 

Уравнения движения плоской фигуры в неподвижной системе координат:

x 0 = x 0(t); y 0 = y 0; φ = φ (t), (39)

где x0 и y0 - координаты произвольной точки О, принятой за полюс; φ - угол между неподвижной осью О 1 х и осью Ох', неизменно связанной с фигурой (рис. 63). Уравнения движения любой

Рис. 63 точки плоской фигуры имеют вид

x = x0 + x' cos φ — y' sin φ; (40)

y = y0 + x 'sinφ + y 'cosφ,

где х', у'— координаты этой точки в системе, скреплен­ной с фигурой.

Скорости двух любых точек плоской фигуры О и А связаны между собой зависи-мостью (рис. 64)

, (41)

где

(42)

Рис. 64- вращательная скорость точки А относительно О, направленная перпендикулярно отрезку ОА в сторону вращения фигуры и равная по модулю

vOA = ωOA. (43)

В этих формулах есть мгновенная угловая скорость плоской фигуры.

Если за полюс О принять мгновенный центр скоро­стей Р, т. е. точку, скорость которой в данный момент равна нулю, то скорость любой точки А перпен­дикулярна отрезку РА, направлена в сторону вращения фигуры и равна по модулю

vA = ω·PA. (44)

Таким образом,

. (45)

Для нахождения мгновенного центра скоростей доста­точно знать направления скоростей двух каких-либо точек плоской фигуры: мгновенный центр скоростей находится на пересечении перпендикуляров, восставленных из дан­ных точек к направлениям их скоростей. Если эти перпендикуляры сливаются в один, то для нахождения мгно­венного центра скоростей надо дополнительно знать модули скоростей.

Мгновенный центр находится в этом случае в точке пересечения общего перпендикуляра и прямой, соединяющей концы скоростей. Если же перпен­дикуляры параллельны, то мгновенного центра не сущест­вует. В этом случае ω = 0, а скорости всех точек плоской фигуры одинаковы по модулю и по направлению.

Если плоская фигура, ограниченная некоторым контуром, катится без скольжения по другому неподвижному контуру, то точка их соприкосно­вения в данный момент является мгновенным центром скоростей этой фигуры.

Теорема: проекции скоростей двух точек плоской фигуры на пря­мую, соединяющую эти точки, рав­ны между собой, т. е.

пр АВ = пр АВ (46)

Проекции вектора и на оси, связанные с фигурой, определя­ют по формулам

. (47)

Пример 1. Кривошип ОА механизма (рис. 65) вра­щается с угловой скоростью ω 0. Определить скорости точек В и С, угловую скорость звена BD в том положении механизма, когда α = 30°, β = 60°, а шатун ВС занимает вертикальное положение. Принять ОА= АВ =а; BD = a√ 3.

Решение. Механизм совершает плоскопараллельное движение. Ведущим звеном, движение которого задано, является кривошип ОА, совершающий вращение вокруг оси О. Определим модуль скорости конца кривошипа, то есть точки А:

ν А = ω 0 ОА = ω 0 а

Вектор перпендикулярен ОА и направлен в сторону вращения кривошипа. Перейдем к звену АВ. Найдем скорость точки В.

Вектор направлен перпендикулярно BD, так как точка В принадлежит одновременно и звену BD, которое может вращаться вокруг точки D.

Мгновенный центр скоростей звена АВ находится в точке Р пересечения перпендикуляров к и . Из Δ АВР находим ВР = , АР = а/2.

По формуле (44), vA = ωAВ ·AP, откуда

ωАВ = vА/АР = 2 ω 0.

Пользуясь этой же формулой, определим

vВ = ωAВ ·ВP = ω 0 а√ 3.

Перейдем к звену ВD. Зная скорость точки В, найдем ωВD = vB /BD = ω 0.

Далее рассмотрим движение звена ВС Используя теорему о проекциях скоростей двух точек, получим

пр ВС = пр ВС = vC.

Отсюда

vC = vB cos 30˚ = 3 0/2.

Направления скоростей и

Рис. 65 показаны на рисунке 65.

Задачи

1.4.1.* Цилиндр радиусом R обмотан тросом, перекинутым через блок О (рис. 66). Конец троса тянут со скоростью, в то время как центр цилиндра имеет скорость . Определить угловую скорость

Рис. 66 цилиндра, счи­тая участок троса от

цилиндра до блока вертикальным. Найти модули скоростей точки В на горизонтальном диаметре

цилиндра и точки С на верти­кальном диаметре.

Ответ: .

1.4.2.* Подъем трубы производится с помощью тале-вого ступенчатого барабана А (рис. 67), вал которого делает 10 об/мин. Определить модуль скорости оси трубы, если r = 5 см, R = 15 см. Участки тросов ВЕ и DC считать вертикальны-

Рис.67 ми. Ответ: v = 5,24 см/с.

1.4.3.* В механизме (рис. 68) («римская передача») ведущее зубчатое колесо I вращается с угловой ско­ростью ω 0. Определить модуль скорости штока CD в момент, когда α = 90°, если при этом шарниры А 1 и А 2 ле­жат на прямой, проходящей через центры O 1 и О 2 и па­раллельной звену В 1 В2. Радиусы колес соответственно равны r 1 и r 2; О 1 А 1 = а 1; О 2 А 2 = а 2; СВ 1 =СВ2.

Ответ: v = ω 0(a 1 r 2 + a 2 r 1)/2 r 2.

Рис. 68 Рис. 69

1.4.4.* Доказать, что отношение скоростей порш­ней B 1 и B 2 в механизме компрессора (рис. 69) в любой момент времени такое же, как и отношение расстояний от них до центра вращения кривошипа, если OA 1 = OA 2, а А 1 В 1 = А 2 В 2

1.4.5.* На рис. 70 изображен механизм газового двигателя. Определить угловые скорости зубчатых колес в момент, когда звено В 1 В 2 параллельно линии центров, шток ЕС - горизонтален, а точки крепления тяг А 1 и А 2 занимают наинизшее положение, если в этот моментскорость поршня равна v. Дано: О 1 А 1= а 1; О 2; О 2 А 2 = а 2; CB 1 = b 1; СВ 2 = b 2; радиусы r 1 и r 2 (a 1 b 2 r 2 ≠ a 2 b 1 r 1)

Ответ: (если знаменатель положителен, то колесо I вращается против дви­жения часовой стрелки).

 

Рис. 70 Рис. 71

1.4.6.* (рис. 71). Два катка положены на наклон­ные плоскости, образующие между собой угол γ, так,что они могут катиться по этим плоскостям без сколь­жения. Центры катков А и В шарнирно соединены со стержнями АС и ВС, имеющими общий шарнир С. Опре­делить модуль скорости точки С в момент, когда стержни параллельны соответствующим плоскостям, если при этом центры катков имеют скорости и соответственно.

Ответ:

1.4.7. Зависят ли при плоскопараллельном движении значение и направ­ление угла поворота твердого тела от выбора полюса? (Нет)

1.4.8. Зависит ли при плоскопараллельном движении твердого тела вид уравнений движения полюса от его выбора? (Да)

1.4.9. Стержень АВ (рис.72) движется согласно уравнени­ям хА = 2 + t 2, yA = 0, φ = 0,25 π t. Определить абсциссу точки В в момент времени t 1 =1 с, длина АВ =3 м. (0,879)

1.4.10. Центр колеса, катящегося по прямолиней­ному участку пути (рис.73), движется согласно урав­нениям

хС = 0,3 t 2, уC = 0,15 м. Определить в момент времени

t 1 = l c ординату точки В, если в началедвижения прямая АВ совпадала с осью Оу. (0,212)

 

 

Рис. 72 Рис. 73

1.4.11. Балка AD (рис.74) движется согласно уравнениям хА = t 2, yA = 0, φ = arc sin {2/ [4 + (3,5 - t 2)2]0,5}. Определить абсциссу точки А в положении балки, когда ее угол поворота φ = 38°. (0,940)

1.4.12. Вершины А и В треугольника (рис. 75) во время движения все время находятся соответственно на осях Оу и Ох. Определить угол поворота φ в момент вре-мени t 1 = 2 с, если вершина В из положения xB (0) = 2 м начала перемещаться с постоянной скоростью v B = 0,5 м/с; длина АВ = 4 м. (0,846)

 

Рис. 74 Рис. 75

1.4.13. Колесо радиуса R = 10 см катитсяпо прямолинейному участку пути с постоянным ускорением центра колеса аC = 2 π cм/с2. Определить, сколько оборотов совершило колесо в момент времени t = 10 с, если скорость vC (0) = 0. (500)

1.4.14. Кривошип ОА (рис. 76) начал равномерно вра­щаться из состояния покоя с угловым ускоре­нием εOA = 0,1 π. Определить, сколько оборо­тов совершит шестерня 2 по истечении 10 с. Радиусы

шестерен r1 = r 2 = 10 см. (5)

Рис. 76


Поделиться с друзьями:

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.021 с.