Классификация кабеля витая пара по общему экрану вокруг всех пар — КиберПедия 

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Классификация кабеля витая пара по общему экрану вокруг всех пар

2017-12-09 425
Классификация кабеля витая пара по общему экрану вокруг всех пар 0.00 из 5.00 0 оценок
Заказать работу

Медные кабели можно подразделить по другому признаку на два типа по общему экрану вокруг всех пар: экранированные кабели и не экранированные.

Кабели без общего экрана и без экрана вокруг витых пар называют UTP и тут путаницы с названием не возникает.

Для кабелей с незащищенной витой парой и только с общим экран вокруг всех витых пар в виде фольгированной пленки используется сокращение ScTP (англ. Screened Twisted Pair) или сокращение FTP (англ. Foiled Twisted Pair). Сокращение ScTP используется в северо-американском стандарте на СКС TIA/EIA-568 и поэтому часто используется американскими производителями витопарных кабелей. Кабели, которые имеют общий экран вокруг всех витых пар, называют экранированными кабелями витая пара.

 

 

Если в витопарном кабеле будет общий экран, а вокруг отдельной витой пары не будет своего экрана, то такой кабель будет относиться к типу незащищенной витой пары и будет называться кабель витая пара UTP с общим экраном. Таким образом, кабели ScTP, FTP относятся к типу UTP.

Для кабелей с защищенной витой парой с общим экран или несколькими общими экранами вокруг всех пар используют обозначения STP, S/STP, F/STP, PiMF (англ. Рairs In Metal Foil). Эти кабели относятся к типу кабелей с защищенной витой парой и относятся к типу STP кабелей.

Нужно отличать электрическую изоляцию проводящих жил, которая имеется в любом кабеле, от электромагнитной изоляции. Первая состоит из непроводящего диэлектрического слоя — бумаги или полимера, например поливинилхлорида или полистирола. Во втором случае помимо электрической изоляции проводящие жилы помещаются также внутрь электромагнитного экрана, в каче­стве которого чаще всего применяется проводящая медная оплетка.

Рисунок 4.2 - Устройство кабелей

 

Кабель на основе неэкранированной витой пары, используемый для проводки внутри здания, разделяется в международных стандартах на категории (от 1 до 7).

- Кабели категории 1 применяются там, где требования к скорости передачи минимальны. Обычно это кабель для цифровой и аналоговой передачи голоса и низкоскоростной (до 20 Кбит/с) передачи данных. До 1983 года это был ос­новной тип кабеля для телефонной разводки.

- Кабели категории 2 были впервые применены фирмой IBM при построении собственной кабельной системы. Главное требование к кабелям этой катего­рии — способность передавать сигналы со спектром до 1 МГц.

- Кабели категории 3 были стандартизованы в 1991 году. Стандарт EIA-568 определил электрические характеристики кабелей для частот в диапазоне до 16 МГц. Кабели категории 3, предназначенные как для передачи данных, так и для передачи голоса, составляют сейчас основу многих кабельных систем зданий.

- Кабели категории 4 представляют собой несколько улучшенный вариант кабелей категории 3. Кабели категории 4 обязаны выдерживать тесты на частоте передачи сигнала 20 МГц и обеспечивать повышенную помехоустойчи­вость и низкие потери сигнала. На практике используются редко.

- Кабели категории 5 были специально разработаны для поддержки высо­коскоростных протоколов. Их характеристики определяются в диапазоне до 100 МГц. Большинство высокоскоростных технологий (FDDI, Fast Ethernet, ATM и Gigabit Ethernet) ориентируются на использование витой пары кате­гории 5. Кабель категории 5 пришел на замену кабелю категории 3, и сегодня все новые кабельные системы крупных зданий строятся именно на этом типе кабеля (в сочетании с волоконно-оптическим).

- Особое место занимают кабели категорий 6 и 7, которые промышленность начала выпускать сравнительно недавно. Для кабеля категории 6 характеристики определяются до частоты 250 МГц, а для кабелей категории 7 — до 600 МГц. Кабели категории 7 обязательно экранируются, причем как каждая пара, так и весь кабель в целом. Кабель категории 6 может быть как экранированным, так и неэкранированным. Основное назначение этих кабелей — поддержка высокоскоростных протоколов на отрезках кабеля большей длины, чем ка­бель UTP категории 5.

Все кабели UTP независимо от их категории, выпускаются в 4-парном исполнении. Каждая из четырех пар кабеля имеет определенный цвет и шаг скрутки.

Экранированная витая пара хорошо защищает передаваемые сигналы от внеш­них помех, а также меньше излучает электромагнитные колебания вовне, что, в свою очередь, защищает пользователей сетей от вредного для здоровья излучения. Наличие заземляемого экрана удорожает кабель и усложняет его прокладку.

Основным стандартом, определяющим параметры экранированной витой пары для применения внутри зданий, является фирменный стандарт IBM. В этом стан­дарте кабели делятся не на категории, а на типы от 1 до 9 включительно.

Рассмотрим для примера кабель типа 1 стандарта IBM. Он состоит из двух пар скрученных проводов, экранированных проводящей оплеткой, которая заземля­ется. Электрические параметры кабеля типа 1 примерно соответствуют парамет­рам кабеля UTP категории 5. Однако волновое сопротивление кабеля типа 1, равное 150 Ом, значительно выше волнового сопротивления UTP категории 5 (100 Ом), поэтому невозможно «улучшение» кабельной проводки сети путем простой замены неэкранированной пары экранированной парой типа 1. Передатчики, рассчитанные на работу с кабелем, имеющим волновое сопротивление 100 Ом, будут плохо работать на волновое сопротивление 150 Ом.

 

Коаксиальный кабель

Коаксиальный кабель состоит из несимметричных пар проводников. Каждая пара представляет собой внутреннюю медную жилу и соосную с ней внешнюю жилу, которая может быть полой медной трубой или оплеткой, отделенной от внутренней жилы диэлектрической изоляцией. Внешняя жила играет двоякую роль — по ней передаются информационные сигналы и она является экраном, защищающим внутреннюю жилу от внешних электромагнитных полей. Сущест­вует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения: для локальных компьютерных сетей, для глобальных телекоммуникационных сетей, для кабельного телевидения и т. п.

Современные стандарты не считают коаксиальный кабель хорошим вариантом для построения структурированной кабельной системы зданий. Ниже приводят­ся основные типы и характеристики этих кабелей.

«Толстый» коаксиальный кабель разработан для сетей Ethernet 10Base-5 с вол­новым сопротивлением 50 Ом и внешним диаметром около 12 мм. Этот кабель имеет достаточно толстый внутренний проводник диаметром 2,17 мм, который обеспечивает хорошие механические и электрические характеристики (затуха­ние на частоте 10 МГц — не хуже 18 дБ/км). Зато этот кабель сложно монтиро­вать — он плохо гнется.

«Тонкий» коаксиальный кабель предназначен для сетей Ethernet 10Base-2. Обладая внешним диаметром около 50 мм и тонким внутренним проводником
0,89 мм, этот кабель не так прочен, как «толстый» коаксиал, зато обладает гораздо большей гибкостью, что удобно при монтаже. «Тонкий» коаксиальный кабель также имеет волновое сопротивление 50 Ом, но его механические и электрические характеристики хуже, чем у «толстого» коаксиального кабеля. Затухание в этом типе кабеля выше, чем в «толстом» коаксиальном кабеле, что приводит к необходимости уменьшать длину кабеля для получения одинакового затухания в сегменте.

Телевизионный кабель с волновым сопротивлением 75 Ом широко применяется в кабельном телевидении. Существуют стандарты локальных сетей, позволяющие использовать такой кабель для передачи данных.

 

Волоконно-оптический кабель

Волоконно-оптический кабельсостоит из тонких (5-60 микрон) гибких стеклянных волокон (волоконных световодов), по которым распространяются световые сигналы. Это наиболее качественный тип кабеля — он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и к тому же лучше других типов передающей среды обеспечивает защиту данных от внешних помех (в силу особенностей распространения света такие сигналы легко экранировать).

Каждый световод состоит из центрального проводника света (сердцевины) — стеклянного волокна, и стеклянной оболочки, обладающей меньшим показате­лем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от покрывающего слоя оболочки. В зависи­мости от распределения показателя преломления и величины диаметра сердеч­ника различают:

- многомодовое волокно со ступенчатым изменением показателя преломления
(рис. 4.3, а);

- многомодовое волокно с плавным изменением показателя преломления (рис. 4.3, б);

- одномодовое волокно (рис. 4.3, в).

Рисунок 4.3 - Типы оптического кабеля

 

Понятие «мода» описывает режим распространения световых лучей в сердцевине кабеля.

В одномодовом кабеле (Single Mode Fiber, SMF) используется центральный проводник очень малого диаметра, соизмеримого с длиной волны света — от 5 до 10 мкм. При этом практически все лучи света распространяются вдоль оптиче­ской оси световода, не отражаясь от внешнего проводника. Изготовление сверхтонких качественных волокон для одномодового кабеля представляет собой сложный технологический процесс, что делает одномодовый кабель достаточно дорогим. Кроме того, в волокно такого маленького диаметра достаточно сложно направить пучок света, не потеряв при этом значительную часть его энергии.

В многомодовых кабелях (Multi Mode Fiber, MMF) используются более широ­кие внутренние сердечники, которые легче изготовить технологически. В много-, модовых кабелях во внутреннем проводнике одновременно существует несколько световых лучей, отражающихся от внешнего проводника под разными углами. Угол отражения луча называется модой луча. В многомодовых кабелях с плавным изменением коэффициента преломления режим отражения лучей имеет сложный характер. Возникающая при этом интерференция ухудшает качество передаваемого сигнала, что приводит к искажениям передаваемых импульсов в многомодовом оптическом волокне.

По этой причине технические характеристики многомодовых кабелей хуже, чем одномодовых.

В результате многомодовые кабели используются в основном для передачи дан­ных на скоростях не более 1 Гбит/с на небольшие расстояния (до 300-2000 м), а одномодовые — для передачи данных со сверхвысокими скоростями в несколь­ко десятков гигабит в секунду (а при использовании технологии DWDM — до нескольких терабит в секунду) на расстояния до нескольких десятков и даже со­тен километров (дальняя связь).

В качестве источников света в волоконно-оптических кабелях применяются:

- светодиоды, или светоизлучающие диоды (Light Emitted Diode, LED);

- полупроводниковые лазеры, или лазерные диоды.

Для одномодовых кабелей применяются только лазерные диоды, так как при таком малом диаметре оптического волокна световой поток, создаваемый светодиодом, невозможно без больших потерь направить в волокно — он имеет чересчур широкую диаграмму направленности излучения, в то время как лазерный диод — узкую. Более дешевые светодиодные излучатели используются только для многомодовых кабелей.

Стоимость волоконно-оптических кабелей ненамного превышает стоимость ка­белей на витой паре, но проведение монтажных работ с оптоволокном обходится намного дороже из-за трудоемкости операций и высокой стоимости применяемого монтажного оборудования.

 

Радиорелейная линия

Радиорелейная линия (РРЛ) представляет собой цепь приёмо-передающих (ретрансляционных) радиостанций, служащих для организации радиосвязи между конечными пунктами. Бывает наземной и спутниковой 9в качестве ретранслятора используется спутник связи).Наземная радиорелейная связь осуществляется обычно на деци- и сантиметровых волнах (от сотен мегагерц до десятков гигагерц).

По назначению радиорелейные системы связи делятся на три категории, каждой из которых выделены свои диапазоны частот:

- местные линии связи от 0,39ГГц до 40,5ГГц

- внутризоновые линии от 1,85ГГц до 15,35ГГц

- магистральные линии от 3,4ГГц до 11,7ГГц

Антенны соседних станций располагают в пределах прямой видимости (за исключением тропосферных станций). Для увеличения длины интервала между станциями антенны устанавливают как можно выше — на мачтах (башнях) высотой 10—100 м (радиус видимости — 40-50 км) и на высоких зданиях. Станции могут быть как стационарными, так и подвижными (на автомобилях).

Принципиальным отличием радиорелейной станции от иных радиостанций является дуплексный режим работы, то есть приём и передача происходят одновременно (на разных несущих частотах).

Протяженность наземной линии радиорелейной связи — до 10000 км, ёмкость — до нескольких тысяч каналов тональной частоты в аналоговых линиях связи, и до 622 мегабит в цифровых линиях связи. В общем случае, протяжённость и ёмкость (скорость передачи данных) находятся в обратно пропорциональной зависимости друг от друга: как правило, чем больше расстояние, тем ниже скорость, и наоборот.

 

 


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.024 с.