Конструкционные низколегированные стали — КиберПедия 

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Конструкционные низколегированные стали

2017-11-27 56
Конструкционные низколегированные стали 0.00 из 5.00 0 оценок
Заказать работу

Низколегированные стали, содержат до 2,5 % легирующих элементов. Обозначение марки включает в себя цифры и буквы, указывающие на примерный состав стали. В начале марки приводятся двузначные цифры, указывающие среднее содержание углерода в сотых долях процента. Буквы справа от цифры обозначают легирующие элементы: А – азот, Б – ниобий, В – вольфрам, Г – марганец, Д – медь, Е – селен, К – кобальт, Н – никель, М – молибден, П – фосфор, Р – бор, С – кремний, Т – титан, Ф – ванадий, Х – хром, Ц – цирконий, Ч – редкоземельные элементы, Ю – алюминий. Следующие после буквы цифры указывают примерное содержание (в целых процентах) соответствующего легирующего элемента (при содержании 1-1,5 % и менее цифра отсутствует).

К данной группе относят, стали с содержанием углерода 0,1-0,3 %, обеспечивающие после химико-термической обработки, закалки и низкого отпуска высокую поверхностную твердость при вязкой, но достаточно прочной сердцевине. Эти стали, используют для изготовления деталей машин и приборов (кулачков, зубчатых колес и др.), испытывающих переменные и ударные нагрузки и одновременно подверженных износу.

Конструкционные цементуемые стали

Карбидо- и нитридообразующие элементы (такие, как Cr, Mn, Mo и др.) способствуют повышению прокаливаемости, поверхностной твердости, износостойкости и контактной выносливости. Никель повышает вязкость сердцевины и диффузионного слоя и снижает порог хладноломкости. Цементуемые (нитроцементуемые) легированные стали по механическим свойствам подразделяют на две группы: стали средней прочности с пределом текучести менее 700 МПа (15Х, 15ХФ) и повышенное прочности с пределом текучести 700-1100 МПа (12Х2Н4А, 18Х2Н4МА и др.).

Хромистые (15Х, 20Х) и хромованадиевые (15ХФ) стали цементуются на глубину до 1,5 мм. После закалки (880 0С, вода, масло) и последующего отпуска (180 0С, воздух, масло) стали имеют следующие свойства: ув = 690-800 МПа, д = 11-12 %, KCU = 0,62 МДж/м2.

Хромомарганцевые стали (18ХГТ, 25ХГТ), широко применяемые в автомобилестроении, содержат по 1 % хрома и марганца (дешевого заменителя никеля в стали), а также 0,06 % титана. Их недостатком является склонность к внутреннему окислению при газовой цементации, что приводит к снижению твердости слоя и предела выносливости. Этот недостаток устраняется легированием стали молибденом (25 ХГМ). Для работы в условиях изнашивания используют сталь 20ХГР, легированную бором. Бор повышает прокаливаемость, и прочность стали, но снижает ее вязкость и пластичность.

Хромоникельмолибденовая (вольфрамовая) сталь 18Х2Н4МА (18Х2Н4ВА) относится к мартенситному классу и закаливается на воздухе, что способствует уменьшению коробления. Легирование хромоникелевых сталей W или Mo дополнительно повышает их прокаливаемость. Причем Мо существенно повышает прокаливаемость цементованного слоя, в то время как хром и марганец увеличивают прежде всего прокаливаемость сердцевины. В цементованном состоянии данную сталь применяют для изготовления зубчатых колес авиационных двигателей, судовых редукторов и других крупных деталей ответственного назначения. Эту сталь используют также как улучшаемую при изготовлении деталей, подверженных большим статическим и ударным нагрузкам.

Конструкционные улучшаемые стали

Улучшаемыми называют такие стали, которые используются после закалки с высоким отпуском (улучшения). Эти стали (40Х, 40ХФА, 30ХГСА, 38ХН3МФА и др.) содержат 0,3-0,5 % углерода и 1-6 % легирующих элементов. Стали закаливают с 820-880 0С в масле (крупные детали – в воде); высокий отпуск производят при 500-650 0С с последующим охлаждением в воде, масле или на воздухе (в зависимости от состава стали). Структура стали после улучшения – сорбит. Данные стали применяют для изготовления валов, шатунов, штоков и других деталей, подверженных воздействию циклических или ударных нагрузок. В связи с этим улучшаемые стали должны обладать высоким пределом текучести, пластичностью, вязкостью, малой чувствительностью к надрезу.

Стали относятся к мартенситному классу, слабо разупрочняются при нагреве до 300-400 0С. Из них изготавливают валы и роторы турбин, тяжело нагруженные детали редукторов и компрессоров.

Рессорно-пружинные стали

Пружины, рессоры и другие упругие элементы работают в области упругой деформации материала. В то же время многие из них подвержены воздействию циклических нагрузок. Поэтому основные требования к пружинным сталям – это обеспечение высоких значений пределов упругости, текучести, выносливости, а также необходимой пластичности и сопротивления хрупкому разрушению.

Стали для пружин и рессор содержат 0,5-0,75 % С; их также дополнительно легируют кремнием (до 2,8 %), марганцем (до 1,2 %), хромом (до 1,2 %), ванадием (до 0,25 %), вольфрамом (до 1,2 %) и никелем (до 1,7 %). При этом происходит измельчение зерна, способствующее возрастанию сопротивления стали малым пластическим деформациям, а следовательно, ее релаксационной стойкости.

Широкое применение на транспорте нашли кремнистые стали 55С2, 60С2А, 70С3А. Однако они могут подвергаться обезуглероживанию, графитизации, резко снижающим характеристики упругости и выносливости материала. Устранение указанных дефектов, а также повышение прокаливаемости и торможение роста зерна при нагреве достигается дополнительным введением в кремнистые стали хрома, ванадия, вольфрама и никеля.

Лучшими технологическими свойствами, чем кремнистые стали, обладает сталь 50ХФА, широко используемая для изготовления автомобильных рессор. Клапанные пружины делают из стали 50ХФА, не склонной к обезуглероживанию и перегреву, но имеющей малую прокаливаемость.

Термическая обработка легированных пружинных сталей (закалка 850-880 0С, отпуск 380-550 0С) обеспечивают получение высоких пределов прочности и текучести. Применяется также изотермическая закалка.

Максимальный предел выносливости получают при термической обработке на твердость HRC 42-48.

Для изготовления пружин также используют холоднотянутую проволоку (или ленту) из высокоуглеродистых сталей 65, 65Г, 70, У8, У10 и др.

Пружины и другие элементы специального назначения изготавливают из высокохромистых мартенситных (30Х13), мартенситно-стареющих (03Х12Н10Д2Т), аустенитных нержавеющих (12Х18Н10Т), аустенитно-мартенситных (09Х15Н8Ю) и других сталей и сплавов.

Шарикоподшипниковые стали

Для обеспечения работоспособности изделий шарикоподшипниковая сталь должна обладать высокой твердостью, прочностью и контактной выносливостью. Это достигается повышением качества металла: его очисткой от неметаллических включений и уменьшением пористости посредством использования электрошлакового или вакуумно-дугового переплава.

При изготовлении деталей подшипника широко используют шарикоподшипниковые (Ш) хромистые (Х) стали ШХ15СГ (последующая цифра 15 указывает содержание хрома в десятых долях процента – 1,5 %). ШХ15СГ дополнительно легирована кремнием и марганцем для повышения прокаливаемости. Отжиг стали на твердость порядка 190 НВ обеспечивает обрабатываемость полуфабрикатов резанием и штампуемость деталей в холодном состоянии. Закалка деталей подшипника (шариков, роликов и колец) осуществляется в масле с температур 840-860 0С. Перед отпуском детали охлаждают до 20-25 0С для обеспечения стабильности их работы (за счет уменьшения количества остаточного аустенита). Отпуск стали проводят при 150-170 0С в течение 1-2 ч.

Детали подшипников качения, испытывающие большие динамические нагрузки, изготавливают из сталей 20Х2Н4А и 18ХГТ с последующей их цементацией и термической обработкой. Для деталей подшипников, работающих в азотной кислоте и других агрессивных средах, используется сталь 95Х18, содержащая 0,95 % С и 18 % Cr.

Износостойкие стали

Износостойкость деталей обычно в первую очередь обеспечивается повышенной твердостью поверхности. Однако высокомарганцевая аустенитная сталь 110Г13Л (1,25 % С, 13 % Mn, 1 % Cr, 1 % Ni) при низкой начальной твердости (180-220 НВ) успешно работает на износ в условиях абразивного трения, сопровождаемого воздействием высокого давления и больших динамических (ударных) нагрузок (такие условия работы характерны для траков гусеничных машин, щек дробилок и др.). Это объясняется повышенной способностью стали упрочняться в процессе холодной пластической деформации, равной 70 %, твердость стали возрастает с 210 НВ до 530 НВ. Высокая износостойкость стали достигается не только деформационным упрочнением аустенита, но и образованием мартенсита с гексагональной или ромбоэдрической решеткой. При содержании фосфора более 0,025 % сталь становится хладноломкой. Структура литой стали представляет собой аустенит с выделившимся по границам зерен избыточными карбидами марганца, снижающими прочность и вязкость материала. Для получения одно-фазной аустенитной структуры отливки закаливают в воде с температуры 1050-1100 0С. В таком состоянии сталь имеет высокую пластичность, низкую твердость и невысокую прочность.

Изделия, работающие в условиях кавитационного износа, изготавливают из сталей 30Х10Г10, 0Х14Г12М.

Корозионностойкие стали

Стали, устойчивые против электрохимической коррозии, называются коррозионно-стойкими (нержавеющими). Устойчивость стали против коррозии достигается введением в нее элементов, образующих на поверхности плотные, прочно связанные с основой защитные пленки, препятствующие непосредственному контакту стали с агрессивной средой, а также повышающие ее электрохимический потенциал в данной среде.

Нержавеющие стали, разделяют на две основные группы: хромистые и хромоникелевые.

Хромистые коррозионно-стойкие стали применяют трех типов: с 13, 17 и 27 % Cr, при этом в сталях с 13 % Cr содержание углерода может изменяться в зависимости от требований в пределах от 0,08 до 0,40 %. Структура и свойства хромистых сталей зависят от количества хрома и углерода. В соответствии со структурой, получаемой при нормализации, хромистые стали подразделяют на следующие классы: ферритный (стали 08Х13, 12Х17, 15Х25Т, 15Х28), мартенситно- ферритный (12Х13) и мартенситный (20Х13, 30Х13, 40Х13).

Стали с низким содержанием углерода (08Х13, 12Х13) пластичны, хорошо свариваются и штампуются. Их подвергают закалке в масле (1000-1050 0С) с высоким отпуском при 600-800 0С и применяют для изготовления деталей, испытывающих ударные нагрузки (клапаны гидравлических прессов) или работающих в слабоагрессивных средах (лопатки гидравлических и паровых турбин и компрессора). Эти стали можно использовать при температурах до 450 0С (длительная работа) и до 550 0С (кратковременно). Стали 30Х13 и 40Х13 обладают высокой твердостью и повышенной прочностью. Эти стали закаливают с 1000-1050 0С в масле и отпускают при 200-300 0С. Эти стали используют для изготовления карбюраторных игл, пружин, хирургических инструментов и т.д. Высокохромистые стали ферритного класса (12Х17, 15Х25Т и 15Х28) обладают более высокой коррозионной стойкостью по сравнению со сталями, содержащими 13 % Cr. Эти стали термической обработкой не упрочняются. Они склонны к сильному росту зерна при нагреве свыше 850 0С. Высокохромистые стали ферритного класса используются часто как окалиностойкие.

Хромоникелевые нержавеющие стали в зависимости от структуры подразделяют на аустенитные, аустенитно-мартенситные и аустенитно-ферритные. Структура хромоникелевых сталей зависит от содержания углерода, хрома, никеля и других элементов.

Стали аустенитного класса с 18 % Cr и 9-10 % Ni (12Х18Н9, 17Х18Н9 и др.) в результате закалки приобретают аустенитную структуру и характеризуются высокой пластичностью, умеренной прочностью, хорошей коррозионной стойкостью в окислительных средах. Эти стали технологичны (хорошо свариваются, штампуются, подвергаются холодной прокатке и т.д.).

Стали 12Х18Н9, 17Х18Н9 после медленного охлаждения из аустенитной области имеют структуру состоящую из аустенита, феррита и карбидов. С целью растворения карбидов, а также предотвращения их выделения в процессе медленного охлаждения аустенитные стали нагревают до 1050-1120 0С и закаливают в воде, масле или на воздухе. Аустенитные стали не склонны к хрупкому разрушению при низких температурах, поэтому хромоникелевые коррозионно-стойкие стали широко используются в криогенной технике для хранения сжиженных газов, изготовления оболочек топливных баков и ракет и т.д.

Стали аустенитно-мартенситного класса (09Х15Н8Ю, 09Х17Н7Ю) получили широкое применение в основном как высокопрочные. Они хорошо свариваются, устойчивы против атмосферной коррозии. С целью обеспечения достаточной прочности и одновременно повышенной коррозионной стойкости сталь 09Х15Н8Ю подвергается следующей термической обработке: закалке на аустенит (925-975 0С) с последующей обработкой холодом (-70 0С) и старением (350-3800С).

Эти стали применяют для изготовления обшивки, сопловых конструкций и силовых элементов узлов летательных аппаратов.

Стали аустенитно-ферритного класса (08Х22Н6Т, 03Х23Н6, 08Х21Н6М2Т, 10Х25Н5М2 и др.) содержат 18-30 % Cr, 5-8 % Ni, до 3 % Mo, 0,03-0,10 % С, а также добавки Ti, Nb, Cu, Si и Ni. Эти стали после закалки в воде с 1000-1100 0С имеют структуру, состоящую из равномерно распределенных между собой зерен аустенита и феррита с содержанием последнего порядка 40-60 %. Эти стали, применяют в химическом и пищевом машиностроении, судостроении, авиации, медицине.

Жаропрочные стали и сплавы

Эти стали, используются при работе под нагрузкой и обладают достаточной жаростойкостью при температурах выше 500 0С.

Жаропрочные стали перлитного класса – это низколегированные стали (12Х1МФ, 25Х1М1Ф, 20Х1М1Ф1Бр и др.), содержащие 0,08-0,25 % С и легирующие элементы – Cr, V, Mo, Nb. Лучший комплекс механических свойств обеспечивается закалкой в масле (или нормализацией) с 880-1080 0С с последующим высоким отпуском при 640-750 0С. Стали перлитного класса используются для изготовления деталей, длительно работающих в режиме ползучести при температурах до 500-580 0С и малых нагрузках: это трубы пароперегревателей, арматура паровых котлов, детали крепежа.

Стали мартенситного и мартенситно-ферритного классов (15Х11МФ, 11Х11Н2В2МФ, 15Х12ВНМФ, 18Х12ВМБФР и др.) используются при температурах до 580-600 0С. Стали с меньшим содержанием хрома (до 11 %) принадлежат к мартенситному классу, а с большим (11-13 %) – к мартенситно-ферритному. Стали, закаливают на мартенсит с температур 1000-1100 0С в масле или на воздухе. После отпуска при 600-750 0С стали приобретают структуру сорбита. Стали, используют для изготовления деталей газовых турбин и паросиловых установок.

Аустенитные стали, обладают большей жаропрочностью, чем мартенситные, - их рабочие температуры достигают 700-750 0С. Аустенитные стали пластичны, хорошо свариваются. По способу упрочнения аустенитные стали, подразделяют на три группы:

1) твердые растворы, не упрочняемые старением;

2) твердые растворы с карбидным упрочнением;

3) твердые растворы с интерметаллидным упрочнением.

Стали первой группы (08Х15Н24В4ТР, 09Х14Н19В2БР) применяют в закаленном состоянии (закалка 1100-1600 0С, вода или воздух). Эти стали используют для изготовления трубопроводов силовых установок высокого давления, работающих при 600-700 0С.

Аустенитные жаропрочные стали с карбидным и интерметаллидным упрочнением, как правило, подвергают закалке с 1050-1200 0С в воде, масле или на воздухе и последующему старению при 600-850 0С. Стали с интерметаллидным упрочнением используют для изготовления камер сгорания, дисков и лопаток турбин, а также сварных конструкций, работающих при температурах до 700 0С. Жаропрочные сплавы на железоникелевой основе (например, ХН35ВТ, ХН35ВТЮ и др.) дополнительно легированы хромом, титаном, вольфрамом, алюминием, бором. Они упрочняются, как и аустенитные стали, закалкой и старением. Сплав ХН35ВТЮ применяют для изготовления турбинных лопаток и дисков, колец соплового аппарата и других деталей, работающих при температурах до 750 0С.

 

Получение стали

 

Еще в XX столетии начали широко применять более современные получения стали, позволяющие выпускать наиболее сложные и высоко легированные стали. Рассмотрим три основных применяемых теперь способа получения стали: в мартеновских печах, бессемеровский и томасовский процессы в электрических печах.

Мартеновский способ

Мартеновский способ является основным способом, дающим около 70% высококачественной стали, выплавляемой в мире. В 1865 г. во Франции инженеру П. Мартену после многочисленных попыток удалось получить на поду пламенной печи жидкую сталь, так как до этого этим путем получали сталь в тестообразном состоянии. Мартен применил для сталеплавильной печи принцип регенерации тепла отходящих печных газов для подогрева топлива и воздуха, подаваемого в печь (разработанный инженером Ф. Сименсом и используемый до этого в печах некоторых других производств). По этому принципу строятся и работают мартеновские сталеплавильные печи до настоящего времени. Современные мартеновские печи (рис. 3) отапливают обычно газом (чаще всего смесью доменного газа с коксовальным или природным газом) и оборудуют четырьмя регенераторами (по два с каждой стороны печи), заполненными кирпичной решетчатой кладкой для раздельного подогрева газообразного топлива и воздуха, подаваемых в печь.


Рисунок 3 – Мартеновская печь (разрез и план):

1 – под печи; 2 – передняя стенка; 3 – задняя стенка; 4 – свод; 5 – загрузочные окна; 6 – бетонные опоры; 7 – откос; 8 – воздушный канал (головки); 9 – газовый канал; 10 – вертикальные каналы; 11 – шлаковики газового регенератора; 12 – шлаковики воздушного регенератора.

 

Продукты горения из рабочего пространства печи направляются в одну пару регенераторов (например, правую) и нагревают их насадку (решетчатую внутреннюю кладку), а затем выпускаются в дымовую трубу. В это время газовое топливо и воздух подают в печь через вторую пару регенераторов (например, левую), насадка которых была нагрета раньше. Через некоторое время с помощью автоматически переключающихся клапанов меняется направление выхода печных газов и подачи топлива.

Мартеновские печи строят разной вместимости и производительности – от 10 до 500–900 т. На некоторых заводах работают печи, отапливаемые мазутом или природным газом, в которых подогревается только воздух, подающийся в печь.

В первых печах, предложенных Мартеном, под, стены и свод выкладывали из динасового огнеупорного кирпича. В 1880 г. в России была построена первая мартеновская печь с подом и стенками из доломитового кирпича, которые затем получили широкое распространение. В современном сталеплавильном производстве для кладки стен и пода печей применяют и кислые, и основные огнеупоры; этим отличается устройство основных и кислых мартеновских печей.

Ванна печи, удерживающая расплавленные материалы, имеет форму чаши, и ее длину и ширину обычно определяют на уровне порогов садочных окон, через которые и производят загрузку в печь твердых материалов. Современная 500-тонная печь имеет ванну 16,4 м длины, 5,9 м ширины и более 1 м глубины. Произведение этой длины на ширину принято считать условной площадью пода мартеновской печи. Глубиной ванны считают размер в самой глубокой ее части, которая расположена около выпускного отверстия, от подины, до уровня порогов садочных окон. Боковую кладку и под укрепляют снаружи прочными стальными балками. До недавнего времени своды мартеновских печей делали арочными и выкладывали из динасового кирпича. Такие своды не допускали их нагрев выше 1700° С, что тормозило производительность печей; эти своды обычно выдерживали 200–250 плавок. Теперь своды делают из термостойкого хромомагнезитового кирпича. Изменилась и конструкция свода. Отдельные блоки свода подвешивают на тягах к поперечным балкам каркаса печи и свод получается подвесным. Применение хромомагнезита и новой конструкции свода позволяют нагревать его до 1800° С. Такие подвесные хромомагнезитовые своды выдерживают 500 плавок.

Горячий газ подают в печь по центральному каналу, воздух – по двум боковым. Сходясь в рабочем пространстве печи, эти каналы образуют так называемую головку печи, формирующую газовое пламя. Внутрь стенок головки обычно вставляют кессоны, в которых циркулирует вода для сохранения огнеупоров головки от быстрого разгара. Перед регенераторами в мартеновской печи устанавливают шлаковики для сбора пыли и капель шлака, выносимых из печи с отходящими газами, и предохранения регенераторов от бы-строго загрязнения. Загрузку твердой шихты в печь производят через окна с помощью завалочных машин. Выпуск стали и шлака из мартеновской печи после завершения плавки проводят через летку, которую располагают в так называемой задней продольной стенке печи, не имеющей загрузочных окон. Некоторое количество шлака выпускают иногда через так называемые ложные пороги загрузочных окон на лицевую сторону печи. На время плавки летку (выпускное отверстие) заделывают магнезитовым порошком и огнеупорной глиной.

Кроме стационарных мартеновских печей иногда для переработки чугунов, содержащих много фосфора, применяют качающиеся мартеновские печи, рабочее пространство которых располагают на катках, что облегчает и ускоряет удаление (скачивание) по ходу передела фосфористых шлаков и тем самым повышает производительность печи.

Мартеновский способ получил широкое применение благодаря возможности использования различного сырья и разнообразного топлива. В настоящее время мартеновский процесс различают в зависимости от используемого сырья: скрап-процесс, если его шихта состоит из стального лома (60–70%) и твердого чушкового чугуна (30–40%). Эта разновидность процесса применяется на заводах, не имеющих доменного производства. Широко применяется и скрап-рудный процесс, характерный тем, что его шихта состоит на 20–50% из скрапа и на 50–80% из жидкого чугуна, который после выпуска из доменных печей хранится в больших бочкообразных футерованных внутри огнеупорным кирпичом хранилищах, называемых миксерами. Этот процесс называется скрап-рудным потому, что для ускорения окисления примесей чугуна в печь загружают, кроме того, гематитовую железную руду в количестве 15–30% от массы металлической части шихты.

Скрап-рудный процесс в кислой и основной мартеновских печах проходит различно (меняется состав флюсов и некоторых других шихтовых материалов, по-разному идет окисление примесей). Поэтому различают кислый и основной мартеновские процессы.

Рассмотрим кратко сущность широко применяемого основного скрап-рудного процесса. Мартеновские печи работают циклами, но нагрев печи ведется непрерывно, поэтому подготовка новой плавки стали начинается с осмотра печи и устранения изъяна в подине и боковых откосах печи путем их заварки новым слоем доломита или магнезита еще во время выпуска предыдущей плавки. После выпуска металла выпускное отверстие заделывают и шихту загружают для новой плавки. Сыпучие шихтовые материалы (руда, известняк, скрап) загружают обычно первыми и отдельные их слои хорошо прогревают. На подину принято сначала загружать железную руду, а потом известняк и сверху стальной лом. Все эти материалы подвозят к печам составом платформ в так называемых мульдах (металлические коробки с приспособлением для захвата их хоботом завалочной машины).

Завалочная машина современных крупных печей – это самоходная тележка, перемещающаяся по рельсам вдоль продольных лицевых стенок нескольких мартеновских печей, обычно располагающихся в одну линию. На самоходной тележке установлен механизм управления с кабиной машиниста и загрузочный механизм с длинным штоком (хоботом). Хобот завалочной машины поднимает с платформы мульду с шихтой, вносит ее в печь и, поворачивая, высыпает ее содержимое, затем выносит пустую мульду из печи и ставит ее на платформу.

Во время загрузки твердых материалов в печь расходуется максимальное количество топлива для обеспечения быстрого прогрева и расплавления шихтовых материалов. Жидкий чугун загружают в печь через окно с помощью вставляемого в него стального желоба, футерованного изнутри огнеупором. Жидкий чугун подают к печи в чугуновозном ковше с помощью мостового крана. Чугун заливают в печь, когда твердая шихта прогрета и начинает оплавляться. С заливкой жидкого чугуна резко ускоряется плавление металлической части шихты. Одновременно с прогревом шихты начинается окисление примесей. К моменту расплавления шихты почти полностью окисляется кремний, более половины марганца, третья часть фосфора и частично углерод. Во время плавления образуется значительное количество закиси железа, так как количество воздуха, подаваемого в мартеновскую печь, обычно значительно больше необходимого для сжигания топлива (125% теоретически необходимого) и пламя в мартеновской печи бывает окислительным.

Процесс доводки металла до нужного химического состава производится в так называемый период чистого кипения металла, начинающегося после прекращения добавок в него железной руды. Чистое кипение ванны протекает не менее одного часа. Готовность заданной плавки стали определяют взятием пробы и экспресс-анализом в цеховой лаборатории. После этого проводится раскисление и выпуск стали в ковши, из которых ее разливают в слитки. Общая продолжительность получения стали в мартеновской печи занимает несколько часов. Раскисление стали в ванне мартеновской печи проводят сначала доменным ферромарганцем, а затем доменным ферросилицием. Кремний ферросилиция отнимает кислород от закиси железа и образует сложные силикаты железа и марганца, которые обладают низкой температурой плавления и малой плотностью. Они всплывают в ванне и переходят в шлак. После этого сталь начинают выпускать из печи и завершают раскисление в ковше (или на желобе, по которому она вытекает в ковш), богатым ферросилицием, и вводят небольшое количество более сильного восстановителя – обычно алюминия или силикоалюминия

Алюминий является активным раскислителем стали, но образующаяся окись алюминия тугоплавка и в виде тонкой взвеси почти вся остается в ста-ли. Принято считать, что эти частички окиси алюминия являются центрами кристаллизации при формировании слитка, и с увеличением количества алюминия, вводимого для раскисления, можно получить более мелкую структуру слитка или отливки. Обычно для раскисления берут 100–400 г алюминия на 1 т выплавляемой стали в зависимости от ее марки.

Скрап-процесс в основной печи отличается от скрап-рудного процесса, особенно в период завалки и расплавления шихты; заключительная часть процесса отличается меньше.

Совсем иначе протекает кислый мартеновский процесс. В связи с тем, что футеровка кислых мартеновских печей выполнена из динаса, наварка пода и откосов проводится кварцевым песком, т. е. кислым материалом. Шлак в этой печи кислый и не содержит свободной извести. Следовательно, удаления серы и фосфора в этой печи не происходит. Поэтому шихтовые материалы и топливо должны содержать эти примеси в минимальном количестве.

Хотя окислительное действие газов в кислых печах сохраняется и в начальный период плавки в шлаке образуется 20–35% закиси железа, окислительное действие его слабее. Окисление углерода происходит значительно медленнее, чем в основном процессе. Руду подают в печь во время окислительного периода небольшими порциями постепенно. Кроме закиси железа, шлаки содержат много SiO2, достигающего к концу процесса 60% за счет перехода части кремнезема из набойки. Этот кремнезем и связывает закись железа в файалит, чем и объясняется медленное окислительное действие шлака в кислом процессе. В результате могут создаться условия для восстановления некоторого количества кремния в период кипения ванны. В горячо работающих кислых печах сталь раскисляется лучше и при малом расходе раскислителей, а в ряде случаев и без них. Поэтому сталь, выплавленная в кислых печах, содержит меньше растворенных газов, неметаллических включений и отличается высокими механическими свойствами.

Кислым процессом производят и легированные высококачественные стали, так как окисление (угар) дорогих легирующих элементов в них значительно меньше. Но и производство кислой мартеновской стали обходится в 1,5–2 раза дороже, чем стали, полученной в основной печи.

Мартеновские печи разной мощности принято сравнивать по суточной производительности, отнесенной к площади пода печи, т. е. суточному съему стали с 1 м2 условной площади пода. Наши мартеновские печи непрерывно улучшают этот показатель. Так, в 1932 г. он равнялся 2,68 т, в настоящее время – более 8 т и нередко достигает 11–12 т, а с применением кислорода он еще выше.

Общая продолжительность плавки стали 220–260 т в печах обычно составляет 7–10 ч при расходе условного топлива 130–350 кг на 1 т стали. Таким образом, основными недостатками мартеновского процесса следует считать большую продолжительность процесса и значительный расход топлива. Именно поэтому направление рационализаторских предложений производственных коллективов и исследований ученых – металлургов направлены на устранение этих недостатков и повышение качества получаемого металла.

Важнейшим фактором, совершенствующим и ускоряющим мартеновский процесс, является применение кислорода. В мартеновском процессе наметились два реальных и экономически целесообразных пути применения кислорода. Первый путь – это обогащение воздушного дутья кислородом до 25–35%. В результате интенсификации горения и повышения окислительной способности печи сокращается общая продолжительность плавки, снижается расход топлива, увеличивается производительность. Так, например, при обогащении дутья печи в 100 т кислородом до 29–30% расход кислорода составляет 55–70 м3 на 1 т стали, производительность печи увеличивается в 2,5 раза при сокращении продолжительности плавки с 9 ч до 3 ч 30 мин; расход топлива при этом снижается с 150 кг/т стали до 92 кг/т. Такое обогащение дутья кислородом и форсирование плавки возможно при наличии свода печи, сделанного из высокотермостойких огнеупоров.

Второй путь – это применение кислорода для интенсификации окисления примесей путем кратковременного введения в печь кислорода. Наиболее перспективным в этом направлении является введение кислорода водоохла-ждаемыми фурмами через свод печи (до аналогии с кислородно-конверторным производством). Введение кислорода таким образом резко сокращает продолжительность окисления примесей в ванне печи, но сильно увеличивает (в 5–8 раз) содержание пыли в печных газах, за счет разбрызгивания шлака и испарения металла.

На ряде заводов успешно комбинируют эти два способа применения кислорода в мартеновских печах. Последние годы начали применять специально построенные для этих целей двухванные мартеновские печи.

Очень важна автоматизация мартеновских печей, особенно их теплового режима. В период расплавления по заданной программе в газовую смесь вводят больше коксового газа, в период пониженной тепловой нагрузки – меньше. Автоматизируется перекидка клапанов в зависимости от температуры насадок и многое другое. Эти меры приводят к уменьшению расхода топлива, особенно его дорогих компонентов.

Бессемеровский процесс.

В конвертор заливают жидкий чугун с достаточно высоким содержанием кремния (до 2,25% и выше), марганца (0,6-0,9%), и минимальным количеством серы и фосфора.

По характеру происходящей реакции бессемеровский процесс можно разбить на три периода. Первый период начинается после пуска дутья в конвертор и продолжается 3-6 мин. Из горловины конвертора вместе с газами вылетают мелкие капли жидкого чугуна с образованием искр. В этот период окисляются кремний, марганец и частично железа по реакциям:

Si + O2 = SiO2,

2Mn + O2 = 2MnO,

2Fe + O2 = 2FeO.

 

Образующаяся закись железа частично растворяется в жидком металле, способствуя дальнейшему окислению кремния и марганца. Эти реакции протекают с выделением большого количества тепла, что вызывает разогрев металла. Шлак получается кислым (40-50% SiO2).

Второй период начинается после почти полного выгорания кремния и марганца. Жидкий металл достаточно хорошо разогрет, что создаются благоприятные условия для окисления углерода по реакции C + FeO = Fe + CO, которая протекает с поглощением тепла. Горение углерода продолжается 8-10 мин и сопровождается некоторым понижением температуры жидкого металла. Образующаяся окись углерода сгорает на воздухе. Над горловиной конвектора появляется яркое пламя.

По мере снижения содержания углерода в металле пламя над горловиной уменьшается и начинается третий период. Он отличается от предыдущих периодов появлением над горловиной конвертора бурого дыма. Это показывает, что из чугуна почти полностью выгорели кремний, марганец и углерод и началось очень сильное окисление железа. Третий период продолжается не более 2 – 3 мин, после чего конвектор переворачивают в горизонтальное положение и в ванну вводят раскислители (ферромарганец, ферросилиций или алюминий) для понижения содержания кислорода в металле. В металле происходят реакции

FeO + Mn = MnO + Fe,

2FeO + Si = SiO2 + Fe,

3FeO + 2Al = Al2O3 + 3Fe.

Готовую сталь выливают из конвектора в ковш, а затем направляют на разливку.

Чтобы получить сталь с заранее заданным количеством углерода (например, 0,4 – 0,7% С), продувку металла прекращают в тот момент, когда из него углерод еще не выгорел, или можно допустить полное выгорание углерода, а затем добавить определенное количество чугуна или содержащих углерод определенное количество ферросплавов.

Томасовский процесс.

В конвертор с основной футеровкой сначала загружают свежеобожженную известь, а затем заливают чугун, содержащий 1,6-2,0% Р, до 0,6%Si и до 0,8% S. В томасовском конвекторе образуется известковый шлак, необходимый для извлечения и связывания фосфора. Заполнение конвектора жидким чугуном, подъем конвертора, и пуск дутья происходят также как и в бессемеровском процессе.

В первый период продувки в конвекторе окисляется железо, кремний, марганец и формируется известковый шлак. В этот период температура металла несколько повышается.

Во второй период продувки выгорает углерод, что сопровождается некоторым понижением температуры металла. Когда содержание углерода в металле достигнет менее 0,1%, пламя уменьшится и исчезнет. Наступает третий период, вовремя которого интенсивно окисляется фосфор

2P + 5FeO + 4CaO = (CaO)4*P2O5 + 5Fe.

В результате окисления фосфор переходит из металла в шлак, поскольку тетрафосфат кальция может раствориться только в нем. Томасовские шлаки содержат 16 – 24% Р2О5.

Данная реакция сопровождается выделением значительного количества тепла, за счет которого происходит более резкое повышение температуры металла.

Перед раскислением металла из конвертора необходимо удалить шлак, т.к. содержащиеся в раскислителях углерод, кремний, марганец будут восстанавливать фосфор из шлака, и переводить его в металл. Томасовскую сталь применяют для изготовления кровельного железа, проволоки и сортового проката.


Поделиться с друзьями:

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.02 с.