Тема 3.2 Регуляторы давления газа прямого действия — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Тема 3.2 Регуляторы давления газа прямого действия

2017-11-22 198
Тема 3.2 Регуляторы давления газа прямого действия 0.00 из 5.00 0 оценок
Заказать работу

 

Регуляторы давления газа предназначены для автоматического понижения давления газа от начального до расчетного и поддержания его в заданном диапазоне независимо от изменения расхода газа и колебания входного давления.

Основными узлами регулятора типа РД являются:

- разъемный фланцевый корпус с мембранно-пружинным устройством и коленчатым рычагом, воздействующим на толкатель золотника;

- литой тройник вентильного типа с регулирующим клапаном;

- импульсная трубка, соединяющая выходное отверстие тройника с под- мембранной полостью и выполняющая роль звена обратного воздействия конечного давления на мембранно-пружинное измерительное устройство и регулирующий клапан;

- резьбовая накладная гайка, соединяющая корпус регулятора с тройником.

 

Пропускная способность регулятора давления зависит от размера клапана, величины его хода, от отношения давлений до и после регулятора давления, плотности газа, конечного давления.

Дросселирование – это увеличение или уменьшение проходного сечения, через которое проходит газ.

Чувствительным элементом в регуляторе давления газа прямого действия может быть мембрана, которая воспринимает давление газа и преобразует его в механическое действие рычажного механизма.

Мембрана кольцевого типа изготавливается из протестированной масло-бензоморозостойкой резины.

Управление гидравлическим режимом работы системы газораспределения осуществляют с помощью регуляторов давления, которые автоматически поддерживают постоянное давление в точке отбора импульса независимо от интенсивности потребления газа.

 

При регулировании давления происходит снижение начального — более высокого — давления на конечное — более низкое.

Это достигается автоматическим изменением степени открытия дросселирующего органа регулятора, вследствие чего автоматически изменяется гидравлическое сопротивление проходящему потоку газа.

 

Автоматический регулятор давления состоит из исполнительного механизма и регулирующего органа.

Основной частью исполнительного механизма является чувствительный элемент.

Исполнительный механизм преобразует командный сигнал в регулирующее воздействие и в соответствующее перемещение подвижной части регулирующего органа за счет энергии рабочей среды (это может быть энергия газа).

 

Если перестановочное усилие, развиваемое чувствительным элементом регулятора, достаточно большое, то он сам осуществляет функции управления регулирующим органом.

Такие регуляторы называются регуляторами прямого действия.

 

Так как в регулирующих органах регуляторов давления происходит дросселирование газа, то их иногда называют дросселирующими.

В связи с тем, что регулятор давления газа предназначен для поддержания постоянного давления в заданной точке газовой сети, то всегда необходимо рассматривать систему автоматического регулирования в целом — «регулятор и объект регулирования (газовая сеть)».

Принцип работы регуляторов давления газа основан на регулировании по отклонению регулируемого давления.

Разность между требуемым и фактическим значениями регулируемого давления называется рассогласованием.

Оно может возникать вследствие различных возбуждений — либо в газовой сети из-за разности между притоком газа в нее и отбором газа, либо из-за изменения входного (до регулятора) давления газа.

Правильный подбор регулятора давления должен обеспечить устойчивость системы «регулятор-газовая сеть», т. е. способность ее возвращаться к первоначальному состоянию после прекращения возмущения.

 

Исходя из закона регулирования, положенного в основу их работы, регуляторы давления бывают астатические, статические и изодромные.

В системах газораспределения два первых типа регуляторов получили наибольшее распространение.

 

В астатических регуляторах (рис. 63, а) на чувствительный элемент (мембрану) действует постоянная сила от груза 2.

Активная (противодействующая) сила — это усиление, которое воспринимает мембрана от выходного давления Р 2.

При увеличении отбора газа из сети 4 будет уменьшаться давление Р 2, баланс сил нарушится, мембрана пойдет вниз и регулирующий орган откроется.

Такие регуляторы после возмущения приводят регулируемое давление к заданному значению независимо от величины нагрузки и положения регулирующего органа.

Равновесие системы может наступить только при заданном значении регулируемого давления, причем регулирующий орган может занимать любое положение. Такие регуляторы следует применять на сетях с большим самовыравниванием, например, в газовых сетях низкого давления достаточно большой емкости.

 

Рис. 63. Схемы регуляторов давления:

а — астатический регулятор; б — статический регулятор давления;

1 — регулирующий (дроссельный) орган;

2 — мембранно-грузовой привод;

3 — импульсная трубка;

4 — объект регулирования — газовая сеть;

5 — мембранно-пружинный привод.

 

Люфты, трение в сочленениях могут привести к тому, что регулирование станет неустойчивым.

Для стабилизации процесса в регулятор вводят жесткую обратную связь. Такие регуляторы называются статическими. Статические регуляторы характеризуются неравномерностью.

 

В регуляторе (рис. 63, б) груз заменен пружиной — стабилизирующим устройством. Усилие, развиваемое пружиной, пропорционально ее деформации. Когда мембрана находится в крайнем верхнем положении (регулирующий орган закрыт), пружина приобретает наибольшую степень сжатия и Р 2 — максимальное. При полностью открытом регулирующем органе значение Р 2 уменьшается до минимального.

Термины, используемые для характеристики работы

регуляторов давления газа

Статическая ошибка –отклонение регулируемого давления от заданного при установившемся режиме, также называют неравномерностью регулирования.

Динамическая ошибка максимальное отклонение давления в переходный период от одного режима к другому.

Ход клапана — расстояние, на которое перемещается клапан от седла.

Диапазон настройки — разность между верхним и нижним пределами давления, между которыми может быть осуществлена настройка регулятора.

Верхний предел настройки давления — максимальное выходное давление, на которое может быть настроен регулятор.

Зона регулирования — разность между регулируемыми давлениями при 10 % и 90 % от максимального расхода.

Зона пропорциональности — изменение регулируемого давления, необходимого для перемещения регулирующего органа (клапана) на значение его номинального (полного) хода.

Условная пропускная способность это величина, равная расходу воды плотностью 1 г/см³ (1000 кг/м³) в кубических метрах в час через регулятор при номинальном (полном) ходе клапана и перепаде давления 0,1 МПа (1 кг/см²).

Относительная протечка — отношение максимального значения протечки воды через затвор регулирующего органа при перепаде давления на 0,1 МПа к условной пропускной способности.

Основными элементами регулирующих (дросселирующих) органов являются затворы.

Они могут быть односедельные, двухседельные, диафрагменные и шланговые, крановые и заслоночные.

В городских системах газоснабжения в основном применяют регуляторы с одно- и двухседельными затворами, реже — с заслоночными и шланговыми.

 

 

Рис. 64. Схемы дросселирующих органов регуляторов давления газа: а — с односедельным затвором; б — с двухседельным; в — с заслоночным; г — со шланговым. Односедельные, двухседельные затворы могут выполняться как с жестким уплотнением (металл по металлу), так и с эластичным(прокладки из маслобензостойкой резины, кожи, фторопласта и т. п.). Такие затворы состоят из седла и клапана. Достоинством односедельных затворов является то, что они легко обеспечивают герметичность уплотнения. Однако клапаны односедельных затворов являются неразгруженными, т. к. на них действует разность входного и выходного давлений.

В регуляторах давления газа широко применяют тарельчатые плоские клапаны с эластичным уплотнением.

Полный ход плоского клапана, при котором будет осуществляться процесс регулирования, определяется высотой подъема клапана h:

h= 0,25 d с

Для примера: регулятор с диаметром седла 4 мм имеет полный ход клапана 1 мм.

Практически высоту подъема плоского тарельчатого клапана принимают (0,3+0,4) d с.

Дальнейший подъем клапана не сказывается на его пропускной способности.

Двухседельные затворы при тех же условиях обладают значительно большей пропускной способностью вследствие большей суммарной площади проходного сечения седел.

Эти клапаны являются разгруженными, однако при отсутствии расхода газа они не обеспечивают герметичности, что объясняется трудностью посадки затвора одновременно по двум плоскостям.

Заслоночные затворы применяют обычно в ГРП с большими расходами газа (например, ТЭЦ) и используют как регулирующий орган регуляторов непрямого действия с посторонним источником энергии.

Шланговый регулирующий орган имеет эластичный шланг 2 и стакан 3, расположенный в корпусе 4. В стакане 3 есть два ряда продольных прорезей 5 и 6 для прохода газа и поперечная перегородка 1.Перегородка 1 и эластичный шланг 2 разделяют полость устройства на три камеры: А — входного, В — выходного и Б — управляющего давления. При отсутствии входного давления шланг герметично отделяет камеру А от камеры В под действием предварительного натяжения, с которым шланг надет на стакан. При подаче Р1 шланг отжимается от стакана. При подаче управляющего давления в камеру Б изменяется зазор между шлангом и стаканом и происходит регулирование.

В регуляторах давления газа, устанавливаемых в ГРП, в качестве чувствительного элемента и одновременно привода используют мембраны (плоские и гофрированные).

Плоская мембрана представляет собой круглую плоскую пластину из эластичного материала.

Мембрана зажимается между фланцами верхней и нижней мембранных крышек.

Центральная часть мембраны с обеих сторон зажата между двумя круглыми металлическими дисками (обжимными). Жесткие диски увеличивают перестановочную силу и уменьшают неравномерность регулирования.

 

Перестановочное усилие, развиваемое мембраной, зависит от величины так называемой эффективной площади мембраны. Она изменяется в зависимости от прогиба мембраны

Перестановочное усилие определяется по формуле:

N = cFP,

где c — коэффициент активности мембраны; F — площадь мембраны (в проекции на плоскость ее заделки); P — избыточное давление рабочей среды (cF — активная площадь мембраны).

В связи с тем, что при различном прогибе мембраны значения коэффициента активности изменяются, изменяется и перестановочное усилие мембраны.

Диаметр обжимных дисков принято выбирать не более 0,8 диаметра мембраны для обеспечения необходимой подвижности мембранного привода.

Мембрана (от лат. membrana — кожица, перепонка) - гибкая тонкая плёнка, приведённая внешними силами в состояние натяжения и обладающая вследствие этого упругостью.

Выбор регуляторов давления газа необходимо производить, учитывая:

· тип объекта регулирования;

· максимальный и минимальный требуемый расход газа;

· максимальное и минимальное входное давление;

· максимальное и минимальное выходное давление;

· точность регулирования (максимально допустимое отклонение регулируемого давления и время переходного процесса регулирования);

· необходимость полной герметичности при закрытии регулятора;

· акустические требования к работе регуляторов с высокими входными давлениями и большими расходами газа.

Основным требованием при подборе регулятора давления является обеспечение устойчивости его работы на всех возможных режимах, что проще всего добиться правильным выбором регулятора для того или иного объекта.

 

Для тупикового газопровода (с отбором газа в конце газопровода) следует применять статические регуляторы прямого действия.


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.