Гидравлические известьсодержащие вяжущие — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Гидравлические известьсодержащие вяжущие

2017-11-22 234
Гидравлические известьсодержащие вяжущие 0.00 из 5.00 0 оценок
Заказать работу

 

Низкая водостойкость извести всегда побуждала людей искать пути ликвидации этого недостатка. Еще в Древнем Риме был найден способ получения водостойкого вяжущего на основе извести. Помогло римлянам в этом наличие вулкана Везувия. Они обнаружили, что при добавлении вулканического пепла к извести образующаяся смесь после твердения на воздухе в течение 7...14 дн. далее могла твердеть в воде (более того, именно влажные условия были обязательны для набора прочности!). Это было первое гидравлическое вяжущее. Добавки из вулканических пород (пепла, туфа и т. п.) впоследствии получили название гидравлические или пуццолановые (по названию местечка у подножия Везувия, где они добывались). Римские постройки (мосты, акведуки, бани-термы и т. п.) на таких смешанных вяжущих сохранились до сих пор.

В Древней Руси проблема придания извести водостойкости была решена несколько иным путем. Там в роли гидравлической добавки использовали молотый бой кирпича; такую смесь на Руси называли цемянкой.

Механизм твердения этих вяжущих заключается в образовании из смеси извести, активных кремнезема и глинозема (пепла, молотого кирпича и т. п.) и воды водонерастворимых гидросиликатов и гидроалюминатов:

 

nСа(ОН)2 + SiO2 + mH2O → nСаО • SiO2 • mH2O

 

Другой путь получения водостойких вяжущих на основе извести также был найден очень давно. Он базировался на обжиге известняков, имеющих примесь глины от 6 до 20%. В этом случае в обожженном продукте помимо СаО появлялись низкоосновные силикаты и алюминаты (например, 2СаО • SiO2), способные к твердению в воде. Естественно, механизм твердения этих вяжущих был расшифрован только в XX в. Все эти вяжущие в несколько измененном виде применяют до сих пор.

Современные известьсодержащие вяжущие гидравлического твердения — группа низкомарочных (малопрочных) так называемых местных вяжущих. В эту группу входят смешанные вяжущие (известково-пуццолановые и известково-шлаковые), а также гидравлическая известь.

Смешанные вяжущие получают совместным измельчением негашеной извести (10...30%), гидравлической добавки (85...70%) и гипса (до 5%). В качестве добавки используют горные породы, содержащие активный кремнезем: вулканический пепел, пемзу, туф, диатомит, трепел и др. Такие вяжущие называют известково-пуццолановыми. Если в качестве добавки взят доменный гранулированный шлак, такие вяжущие называют известково-шлаковыми.

Известьсодержащие гидравлические вяжущие на начальной стадии (около 7 суток) должны твердеть в сухих условиях, а затем во влажных. По пределу прочности при сжатии стандартных образцов через 28 суток твердения известьсодержащие вяжущие делятся на марки 50; 100; 150 и 200 (кг/см2).

Известьсодержащие гидравлические вяжущие применяют для приготовления растворов для кладки подземных частей зданий и бетонов. Срок хранения таких вяжущих из-за наличия в них негашеной извести не должен превышать 30 суток, причем во время хранения их тщательно предохраняют от увлажнения.

Строительная гидравлическая известь — продукт умеренного обжига при температуре 900... 1100° С мергелистых известняков (содержание глины 8..20 %). В состав гидравлической извести входят свободные оксиды кальция и магния (50...65 %) и низкоосновные силикаты и алюминаты кальция, которые и придают извести гидравлические свойства.

Гидравлическая известь, смоченная водой, полностью гасится, образуя пластичное тесто. В отличие от воздушной она быстрее твердеет, приобретая со временем водостойкость. Однако первые 1...2 недели гидравлическая известь должна твердеть в воздушно-влажных условиях, и только после этого ее можно помещать в воду.

Предел прочности при сжатии затвердевшей гидравлической извести 2...5 МПа. Применяют ее для низкомарочных растворов и бетонов, используемых в том числе и во влажных условиях.

 

Портландцемент

 

Гидравлическая известь обладает рядом недостатков. Главные из них: необходимость твердения на воздухе первые 7... 14 сут, низкие прочность, морозо- и воздухостойкость. Поэтому велись поиски более совершенного вяжущего вещества. Практически одновременно (1824— 1825) независимо друг от друга Егор Челиев в России и Джозеф Аспдин в Англии путем высокотемпературного обжига до спекания смеси известняков и глины получили вяжущее, обладающее большей водостойкостью и прочностью. Производство нового вяжущего, названного впоследствии портландцементом, совершенствовалось и быстро расширялось. Уже в начале XX в. портландцемент стал одним из основных строительных материалов.

Портландцемент — гидравлическое вяжущее, получаемое тонким измельчением портландцементного клинкера и небольшого количества гипса (1,5...3 %). Клинкер получают обжигом до спекания сырьевой смеси, обеспечивающей в портландцементе преобладание силикатов кальция. К клинкеру для замедления схватывания цемента добавляют гипс. Для улучшения некоторых свойств и снижения стоимости портландцемента допускается введение минеральных добавок.

Кроме портландцемента на основе портландцементного клинкера выпускают много других видов цементов.

Производство. Основные операции при получении портландцемента: приготовление сырьевой смеси, обжиг ее до получения цементного клинкера и помол клинкера совместно с добавками.

Соотношение компонентов сырьевой смеси выбирают с таким расчетом, чтобы полученный при обжиге клинкер имел следующий химический состав (%): СаО — 62...68, SiO2 — 18..26, А12О3 — 4...9, Fe2O3 — 2...6. В природе есть горная порода, обеспечивающая получение клинкера такого состава,— мергель, который представляет собой тесную смесь известняка с глиной. Но чаще используют известняк и глину (добываемые отдельно) в соотношении 3: 1 (по массе). Кроме основных компонентов в сырьевую смесь вводят корректирующие добавки и промышленные отходы, обеспечивающие требуемый состав клинкера.

Тщательно подготовленную сырьевую смесь подают на обжиг во вращающуюся печь, которая представляет собой стальную трубу диаметром до 7 м и длиной до 185 м. Изнутри труба выложена огнеупорным кирпичом. Печь установлена под небольшим (3...4о) углом к горизонту и вращается (0,8... 1,3 мин-1), благодаря чему сырьевая смесь перемещается в ней от верхнего конца к нижнему, куда подается топливо. Максимальная температура обжига 1450°С. При таких высоких температурах оксид кальция СаО, образовавшийся в результате разложения известняка, взаимодействует с кислотными оксидами SiO2, А12О3 и Fe2O3, образующимися при разложении глины.

Минерал Формула Количество, %.

Продукты взаимодействия, частично плавясь и спекаясь друг с другом, образуют так называемый портландцементный клинкер — плотные твердые куски серого цвета. В состав портландцементного клинкера входят четыре основных минерала:

- Трехкальциевый силикат (алит) (ЗСаО• SiO2) 42...65%;

- Двухкальциевый силикат (белит) (2СаО• SiO2) 12... 35 %;

-Трехкальциевый алюминат ЗСаО• А12О3 4...14 %;

-Четырехкальциевый алюмоферрит 4СаО•А12О3•Fe2O3 10...18%;

-небольшое количество стеклообразного вещества.

Как видно из таблицы, портландцементный клинкер в основном (на 60...80%) состоит из силикатов кальция, из-за чего портландцемент также называют силикатным цементом.

Для получения портландцемента клинкер размалывают в трубных или шаровых мельницах с гипсом и другими добавками. Свойства портландцемента зависят от его минерального состава и тонкости помола клинкера.

При взаимодействии с влагой воздуха активность портландцемента падает, поэтому его предохраняют от действия влаги. Портландцемент хранят в силосах (высоких цилиндрических емкостях из бетона или металла). На строительство его доставляют в специальных вагонах, автомобилях-цементовозах или упакованным в многослойные бумажные или полиэтиленовые мешки.

Твердение. При смешивании с водой частицы портландцемента

начинают растворяться, причем одновременно может происходить гидролиз (разложение водой) и гидратация (присоединение воды) продуктов растворения с образованием гидратных соединений.

По этой схеме (гидролиз и гидратация) взаимодействуют с водой главные компоненты клинкера алит C3S и белит C2S:

 

2(ЗСаО • SiO2) + 6Н2О → ЗСаО • SiO2 • ЗН2О + ЗСа(ОН)2

 

2(2СаО• SiO2) + 4Н2О → ЗСаО • SiO2 • ЗН2О + Са(ОН)2

 

Необходимо подчеркнуть особенности этих реакций:

•C3S взаимодействует с водой намного активнее, чем C2S;

•при взаимодействии силикатов кальция с водой выделяется

растворимый в воде компонент Са(ОН)2 — воздушная известь, создающая щелочную реакцию в твердеющем цементе;

•C3S выделяет Са(ОН)2 в 3 раза больше, чем C2S; общее количество Са(ОН)2 достигает 15 % от массы цементного камня.

Алюминат кальция С3А подвергается только гидратации, причем этот процесс идет очень быстро с образованием крупных кристаллов

ЗСаО • А12О3 + 6Н2О? ЗСаО • А12О3 • 6Н2О

Добавка гипса, вводимая при помоле клинкера, изменяет характер начального периода твердения С3А и замедляет схватывание цемента на несколько часов из-за образования эттрингита ЗСаО • А12О3 • 3CaSO4 • (31 - 33)Н2О.

Четырехкальциевый алюмоферрит C4AF взаимодействует с водой медленнее, чем С3А, образуя гидроалюминат и гидроферрит кальция.

Основной продукт твердения портландцемента — гидросиликаты кальция — практически нерастворимы в воде. Они выпадают из раствора сначала в виде геля (жесткого студня). Этот гель пронизывают, укрепляя его, кристаллы Са(ОН)2. Гель гидросиликатов кальция со временем кристаллизуется. Остальные продукты взаимодействия клинкера с водой также участвуют в формировании структуры цементного камня и, естественно, влияют на его свойства.

Процесс гидратации зерен портландцемента из-за малой их растворимости растягивается на длительное время (месяцы и годы). Чтобы этот процесс мог протекать, необходимо постоянное присутствие воды в твердеющем материале. Однако нарастание прочности со временем замедляется. Поэтому качество цемента принято оценивать по прочности, набираемой им в первые 28 суток твердения.

Технические характеристики портландцемента. К основным характеристикам портландцемента относятся истинная и насыпная плотность, тонкость помола, сроки схватывания, равномерность изменения объема при твердении и прочность затвердевшего цементного камня.

Плотность портландцемента в зависимости от вида и количества добавок составляет 2900...3200 кг/м3, насыпная плотность в рыхлом состоянии 1000... 1100 кг/м3, в уплотненном — до 1700 кг/м3.

Тонкость помола характеризуется количеством цемента, проходящим через сито с сеткой № 008 (размер отверстий 0,08 мм) и его удельной поверхностью. Согласно ГОСТу через сито с сеткой № 008 должно проходить не менее 95 % цемента, при этом удельная поверхность у обычного портландцемента должна быть в пределах 2900...3000 см2/г и у быстротвердеющего портландцемента 3500...5000 см2/г.

Сроки схватывания портландцемента, рассчитываемые от момента затворения, должны быть: начало — не ранее 45 мин; конец — не позднее 10 ч. Эти показатели определяют при температуре 20°С. Если цемент затворяют горячей водой (более 40°С), может произойти очень быстрое схватывание.

Прочность портландцемента характеризуется его маркой. Марку портландцемента определяют по пределу прочности при сжатии и изгибе образцов-балочек 40х40х160 мм, изготовленных из цементно-песчаного раствора (состава 1: 3) стандартной консистенции и твердевших 28 суток (первые сутки в формах на влажном воздухе и 27 сут. в воде при 20°С).

Промышленность выпускает портландцемент четырех марок: 400; 500; 550 и 600 (цифра соответствует округленной в сторону уменьшения средней прочности образцов при сжатии выраженной в кгс/см2).

Тепловыделение при твердении. Твердение портландцемента сопровождается выделением большого количества теплоты. Так как эта теплота выделяется в течение длительного времени (дни, недели), заметного разогрева цементного бетона или раствора не происходит. Однако если объем бетона велик (например, при бетонировании плотин, массивных фундаментов), то потери теплоты в окружающее пространство будут незначительны по сравнению с общим количеством выделяющейся теплоты и возможен разогрев бетона до температуры 70...80° С, что приведет к его растрескиванию.

Равномерность изменения объема. При твердении цементное тесто уменьшается в объеме. Усадка на воздухе составляет около 0,5... 1 мм/м. При твердении в воде цемент немного набухает (до 0,5 мм/м). Однако изменение объема при твердении должно быть равномерным. Это свойство проверяют на лепешках из цементного теста, которые не должны растрескиваться после пропаривания в течение 3 ч (до пропаривания лепешки 24 ч твердеют на воздухе). Неравномерность изменения объема возникает из-за присутствия в цементе свободных СаО и MgO, находящихся в виде пережога.

 


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.034 с.