Техника безопасности в химической лаборатории — КиберПедия 

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Техника безопасности в химической лаборатории

2017-11-17 524
Техника безопасности в химической лаборатории 0.00 из 5.00 0 оценок
Заказать работу

ТЕХНИКА БЕЗОПАСНОСТИ В ХИМИЧЕСКОЙ ЛАБОРАТОРИИ

Работа в химической лаборатории неизбежно связана с рядом опасных и вредных факторов. Для обеспечения безопасности людей необходимо соблюдать определенные правила. Неумелое или небрежное обращение с химическими реактивами и оборудованием может привести к несчастному случаю.

Химическая лаборатория оборудована специальными рабочими столами, шкафами и полками для реактивов, посуды, растворов. Для работы с ядовитыми летучими веществами имеются вытяжные шкафы. Лаборатория снабжена водопроводом и канализацией.

Мебель и оборудование располагаются так, чтобы проходы между столами и выход из лаборатории были всегда свободными для обеспечения возможности быстрой эвакуации людей в экстренных случаях.

В химической лаборатории обязательно имеются средства противопожарной безопасности, а также аптечка для оказания первой помощи.

 

Общие правила поведения в лаборатории

1. Лабораторные работы выполняются студентами во время, предусмотренное расписанием занятий. Категорически запрещается работать в лаборатории в неустановленное время без разрешения преподавателя.

2. В лаборатории никогда нельзя работать одному.

3. Запрещается посещение студентов, работающих в лаборатории, посторонними лицами, а также отвлечение студентов посторонними работами и разговорами.

4. В лаборатории необходимо соблюдать порядок и тишину. Шум и посторонние разговоры отвлекают внимание и могут привести к ошибкам в работе.

5. Нельзя находиться в лаборатории в верхней одежде. Следует работать обязательно в халате, застегивающемся спереди, иметь при себе полотенце. Студенты без халата к выполнению работ не допускаются.

6. Категорически запрещается принимать пищу, пить воду в лаборатории.

7. Запрещается проводить какие-либо опыты, не предусмотренные программой практикума, приносить свои реактивы, выносить реактивы из лаборатории.

8. К выполнению лабораторной работы можно приступать после тщательного изучения методики и правил работы с приборами.

9. На рабочем столе должны находиться необходимые реактивы, оборудование и посуда, рабочий журнал. Поверхность стола должна быть чистой и сухой. Не следует загромождать стол посторонними предметами, ставить на него портфели, сумки и т.д.

10. Во время работы не следует спешить и суетиться. Торопливость, беспорядочность и неряшливость приводят к неудачам в работе, а иногда и к несчастным случаям. Если при выполнении работы возникают какие-либо затруднения, нужно обратиться за советом к лаборанту или преподавателю.

11. При выполнении лабораторной работы все операции необходимо выполнять над столом.

12. После окончания работы следует вымыть посуду, отключить электроприборы, выключить воду, привести в порядок рабочее место и сдать его лаборанту. Бумагу, использованные фильтры, мусор, осколки разбившейся посуды необходимо выбрасывать в мусорное ведро, ни в коем случае не в раковину. О случаях нарушения порядка (разбита посуда, испорчены реактивы и т.п.) необходимо сообщить преподавателю или лаборанту.

 

ХИМИЧЕСКАЯ ПОСУДА

В лаборатории используется стеклянная, фарфоровая, металлическая посуда. Наиболее часто опыты проводят в стеклянной посуде.

Стеклянная химическая посуда условно делится на три группы: посуда общего назначения, мерная посуда, специальная посуда.

Посуда общего назначения используется для самых разнообразных целей. Изготавливается она из обычного и термостойкого стекла.

Пробирки (рис. 1) служат для проведения опытов с небольшими количествами веществ. Обычная лабораторная пробирка имеет размеры 15´150 мм и емкость около 20 мл. При проведении опыта не следует заполнять пробирку более чем на 1/3 объема. Перемешивают реактивы в пробирке легким встряхиванием, постукивая по ней. Нельзя перемешивать вещества резким встряхиванием, закрыв отверстие пробирки пальцем. Нагревают жидкость в пробирке на водяной бане или на открытом пламени, закрепив ее в пробиркодержателе. При этом нагревают не дно пробирки, а сначала верхнюю часть жидкости, затем прогревают всю пробирку. Пробирку держат отверстием от себя и от работающих рядом, чтобы в случае внезапного выброса горячей жидкости она ни на кого не попала.

Химические стаканы (рис. 2) – тонкостенные сосуды цилиндрической формы. Они предназначены для выполнения различных операций – приготовления растворов, проведения некоторых химических реакций и т.д. Химические стаканы изготавливаются в соответствии с ГОСТ, емкость их бывает различной – от 50 мл до 2 л. Различаются они и по форме (высокие и низкие, с носиком и без носика).

Плоскодонные и конические колбы (рис. 3) применяются для самых различных работ (приготовление растворов, фильтрование и т.д.). Небольшие конические колбы, иначе называемые колбами Эрленмейера, применяются для титрования. Емкость плоскодонных конических колб может быть различной – от 25 мл до 5 л. Изготавливают разнообразные колбы: с узким и широким горлом, с обычным цилиндрическим горлом и с отогнутыми краями, а также со специальным пришлифованным горлом. Такие колбы герметично закрываются специальными пробками стандартных размеров. Если колба изготовлена из термостойкого стекла, на ней имеется соответствующее обозначение: ТС, матовый прямоугольник или кружок.

Круглодонные колбы (рис. 4) предназначены для проведения синтезов, могут использоваться при перегонке жидкостей. Они могут иметь одно, два, три, реже четыре горла стандартных размеров. Как правило, одно из них более широкое, остальные узкие.

Химические воронки (рис. 5) различной емкости используются для переливания жидкостей, для фильтрования. Угол воронки чаще всего составляет 60°. Хвостовая часть воронки имеет косой срез, необходимый для того, чтобы переливаемая жидкость стекала по стенке сосуда и не разбрызгивалась.

Эксикаторы (рис. 6) используются для сохранения химических веществ в сухой атмосфере. Эксикатор представляет собой толстостенный стеклянный сосуд с широкой притертой крышкой. На дно эксикатора помещают влагопоглощающее вещество, например прокаленный хлорид кальция. Сверху кладут фарфоровую решетку, на которую ставятся чашки или бюксы с веществами. Эксикатор герметично закрывается крышкой. Герметичность обеспечивается специальной смазкой, которая наносится на пришлифованные поверхности. Крышку открывают, перемещая ее в горизонтальном направлении. Эксикатор переносят, придерживая крышку.

Капельницы (рис. 7) предназначены для работы с индикаторами.

Мерная посуда применяется для измерения объемов жидкостей. Она калибрована, т.е. имеет метку, отмечающую определенный объем жидкости. Калибрование точной мерной посуды производят при температуре 20°С, что указывается на посуде. Отклонение температуры на ± 5°С не вызывает значительного изменения объема. Поэтому с мерной посудой работают при температуре, отличающейся в указанных пределах от той, при которой производилась калибровка. В случае необходимости делают соответствующий пересчет.

Если мерная посуда, кроме метки, отмечающей общий объем, имеет еще метки, которые делят общий объем на части, то такая посуда называется градуированной. При работе с градуированной посудой необходимо установить цену деления.

Мерные (измерительные) цилиндры, мензурки позволяют грубо измерить объем жидкостей. Для точного измерения предназначены мерные колбы, бюретки, пипетки.

Для правильного измерения объема жидкости мерную посуду наполняют ею так, чтобы мениск касался метки, при этом глаз должен находиться на уровне метки. Уровень смачивающих стекло прозрачных жидкостей (воды, водных растворов, спирта) устанавливают по нижнему краю вогнутого мениска, а для непрозрачных и темноокрашенных – по верхнему краю.

Мерные цилиндры и мензурки (рис. 8) используют при приготовлении растворов. Мензурки в отличие от мерных цилиндров имеют коническую форму. Емкость мерных цилиндров от 10 мл до 2 л, мензурок – от 50 до 500 мл. Измерение объемов жидкостей при помощи мензурок дает меньшую точность.

Мерные колбы (рис. 9) предназначены для приготовления растворов точной концентрации. Это мерная посуда на наливание, они имеют одну метку на длинном узком горлышке. Мерные колбы бывают различной емкости – от 50 мл до 2 л. Они бывают с притертой пробкой и без нее.

Пипетки и бюретки (рис. 10) – это мерная посуда, используемая при проведении химического анализа. Пипетки предназначены для отбора точных объемов анализируемых растворов. Бюретки используются для титрования (см. работу 1).

Фарфоровая химическая посуда также довольно часто используется при выполнении химического эксперимента.

Выпарная (выпарительная) чашка (рис. 11) – круглодонная тонкостенная емкость с носиком или без. Применяется для упаривания и выпаривания растворов.

Ступка (рис. 12) – толстостенная фарфоровая посуда. Нижняя внешняя поверхность ступки плоская, а внутренняя – сферическая. Ступки используют для измельчения и растирания твердых веществ с помощью пестика.

Тигли (рис. 13) применяются для прокаливания веществ. Они бывают различной емкости от 2 мл до 100 мл.

В лаборатории также применяются фарфоровые стаканы, кружки и т.д.

 



                 
   
 
 
 
   
     
 
 
   

ЛАБОРАТОРНЫЕ РАБОТЫ


Работа 1

Общие понятия

Растворгомогенная (однородная) система, состоящая из двух или более компонентов, относительные количества которых могут изменяться в широких пределах. В истинном растворе растворенные вещества равномерно распределены в виде молекул или ионов в растворителе. Обычно растворителем считают тот компонент, который в чистом виде существует в том же агрегатном состоянии, что и полученный раствор. Например, в случае раствора соли в воде растворителем является вода. Если оба компонента до образования раствора находились в одинаковом агрегатном состоянии, например жидком (спирт и вода), то растворителем чаще всего считается компонент, находящийся в растворе в относительно большем количестве. Наибольшее практическое значение имеют жидкие растворы.

Растворы электролитов – это растворы диссоциирующих на ионы солей, кислот и оснований. В них растворенные вещества присутствуют в виде молекул и ионов (слабые электролиты) или только в виде ионов (сильные электролиты). Электрическая проводимость этих растворов выше, чем растворителя.

Растворы неэлектролитов – это растворы веществ, не диссоциирующих в растворителе. Они практически не проводят электрический ток. Неэлектролиты в растворе диспергированы до молекул.

Раствор, находящийся при данных условиях в равновесии с растворяемым веществом, называется насыщенным раствором. В нем содержится максимально возможное количество растворенного вещества при заданной температуре.

Раствор, в котором при данных условиях предел растворимости не достигнут, называется ненасыщенным. Концентрация растворенного вещества в нем меньше, чем в насыщенном растворе.

Раствор, в котором при данной температуре содержится большее количество растворенного вещества, чем в насыщенном растворе, называется пересыщенным. Такие системы являются метастабильными, т.е. при отсутствии внешних воздействий могут достаточно долгое время оставаться без изменений, но при введении, например, маленького кристалла растворенного вещества весь избыток его в растворе быстро выпадает в осадок, раствор переходит в устойчивое состояние и становится насыщенным.

Титриметрический анализ

3.1. Сущность титриметрического метода анализа

Титриметрия (титриметрический анализ) – это количественный химический метод анализа, основанный на точном измерении объема стандартного раствора (титранта), вступающего в реакцию с определяемым веществом.

Стандартным называется раствор реагента с точно известной концентрацией. Стандартный раствор добавляется из бюретки по каплям к определенному объему анализируемого раствора. Этот процесс называется титрованием.

Состояние системы, когда количество добавляемого титранта эквивалентно количеству определяемого вещества, называется точкой эквивалентности, или теоретической точкой конца титрования. Для фиксирования точки эквивалентности используют различные индикаторы или инструментальные методы. Резкое изменение окраски индикатора соответствует конечной точке титрования, которая, строго говоря, не всегда совпадает с точкой эквивалентности.

Титриметрия как метод анализа имеет ряд достоинств. Во-первых, этовысокая скорость и точность анализа, а также применимость для определения различных количеств веществ. Во-вторых,этим методом в одном и том же растворе часто можно определять одновременно несколько веществ. Еще одно достоинство –возможность автоматизировать титрование.

В титриметрии применяются реакции, удовлетворяющие следующим требованиям.

· Реакция должна протекать быстро.

· Реакция должна быть стехиометрична и протекать строго по уравнению.

· Она должна протекать количественно, почти до конца, т.е. константа равновесия реакции Кр ³ 108.

· Основной реакции не должны мешать побочные реакции и посторонние вещества.

· Должна четко фиксироваться точка эквивалентности с помощью подходящего индикатора.

Вычисления в титриметрии

В основе расчетов в титриметрическом анализе лежит закон эквивалентов: вещества взаимодействуют друг с другом в эквивалентных количествах. В случае реакций между растворами (титруемого вещества и титранта) его записывают следующим образом

,

где С1 и С2 – молярные концентрации эквивалента реагирующих веществ (нормальные концентрации),

V1 и V2 – объемы растворов.

По известным значениям объемов растворов и концентрации титранта рассчитывают молярную концентрацию эквивалента для исследуемого раствора (нормальность), а далее при необходимости можно найти молярную концентрацию, содержание определяемого вещества в г/л, массу определяемого вещества в образце и т.д.

При серийных анализах удобно пользоваться титром стандартного раствора по определяемому веществу.

Например, T(KMnO4/Fe2+) = 0.005585 г/мл означает, что одним миллилитром стандартного раствора KMnO4 можно оттитровать 0,005585 г ионов Fe2+.

Реактивы.

  • Соль (указывает преподаватель).
  • КОН или NaOH.
  • Стандартный 0,1 н раствор тетрабората натрия.
  • 1%-ный водный раствор метилового оранжевого.
  • Раствор соляной кислоты (титр которой устанавливается).

Оборудование и посуда.

· Бюретки.

· Стаканы на 150-200 мл.

· Набор ареометров.

· Весы.

· Цилиндры.

· Пипетки на 10, 20, 25 мл.

· Колбы конические для титрования на 100 или 250 мл.

 

Выполнение работы.

Опыт №1. Приготовление раствора заданной процентной концентрации.

1.1. Приготовление раствора из твердого вещества и воды.

ТЕХНИКА БЕЗОПАСНОСТИ В ХИМИЧЕСКОЙ ЛАБОРАТОРИИ

Работа в химической лаборатории неизбежно связана с рядом опасных и вредных факторов. Для обеспечения безопасности людей необходимо соблюдать определенные правила. Неумелое или небрежное обращение с химическими реактивами и оборудованием может привести к несчастному случаю.

Химическая лаборатория оборудована специальными рабочими столами, шкафами и полками для реактивов, посуды, растворов. Для работы с ядовитыми летучими веществами имеются вытяжные шкафы. Лаборатория снабжена водопроводом и канализацией.

Мебель и оборудование располагаются так, чтобы проходы между столами и выход из лаборатории были всегда свободными для обеспечения возможности быстрой эвакуации людей в экстренных случаях.

В химической лаборатории обязательно имеются средства противопожарной безопасности, а также аптечка для оказания первой помощи.

 


Поделиться с друзьями:

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.199 с.