Дискретные случайные величины. Законы — КиберПедия 

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Дискретные случайные величины. Законы

2017-11-18 250
Дискретные случайные величины. Законы 0.00 из 5.00 0 оценок
Заказать работу

Дискретные случайные величины. Законы

Распределения биномиальное, геометрическое и Пуассона.

Опр. Случайная величина Х называется дискретной, если она принимает конечное либо счетное число значений, т.е. Ωх—конечно или счетно.

Опр. Законом распределения дискретной случайной величины Х называется совокупность пар чисел вида (хi, рi), где xi—возможные значения случайной величины, а pi—вероятности, с которыми случайная величина принимает эти значения, т.е. , причем . Опр. Говорят, что дискретная случайная величина Х имеет биномиальное распределение с параметрами (n,p), если она может принимать целые неотрицательные значения с вероятностями . Опр. Говорят, что случайная величина Х имеет распределение Пуассона с параметром λ (λ>0), если она принимает целые неотрицательные значения с вероятностями . Обозначают , т.е. случайная величина Х имеет распределение Пуассона с параметром λ. Опр. Говорят, что случайная величина Х имеет геометрическое распределение с параметром р (0<р<1), если она принимает натуральные значения с вероятностями , где q=1-p.

.

 

31. Функция распределения и плотность вероятности непрерывной случайной величины

 

Если функция распределения Fx (x) непрерывна, то случайная величина x называется непрерывной случайной величиной.

 

Если функция распределения непрерывной случайной величины дифференцируема, то более наглядное представление о случайной величине дает плотность вероятности случайной величины px (x), которая связана с функцией распределения Fx (x) формулами

и.

 

Отсюда, в частности, следует, что для любой случайной величины.

 

 

Мат ожидание ДСВ и их свойства.

Опр. Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Обозначают математическое ожидание случайной величины Х через MX или М(Х). – случайная величина Х принимает конечное число значений. – принимает счетное число значений, причем математическое ожидание существует, если ряд в правой части равенства сходится абсолютно.

Свойства математического ожидания:

Свойство 1. Математическое ожидание постоянной величины равно самой постоянной: M(C)=C. Будем рассматривать постоянную С как дискретную случайную величину, которая принимает одно возможное значение С с вероятностью 1. Следовательно, .

Свойство 2. Постоянный множитель можно выносить за знак математического ожидания: M(CX)=CM(X).

Ряд распределения случайной величины СХ

Математическое ожидание случайной величины СХ .

Опр. Случайные величины X1,X2,…,Xn называются независимыми, если для любых числовых множеств B1,B2,…,Bn .

 

Моменты случайной величины

Моме́нтслуча́йной величины́ — числовая характеристика распределения данной случайной величины. Определения

Если дана случайная величина Х определённая на некотором вероятностном пространстве, то:К-мнача́льным моментом случайной величины Х где называется величина если математическое ожидание в правой части этого равенства определено; К-м центра́льным моментом случайной величины называется величина

К-м абсолю́тным и К -м центральным абсолютным моментами случайной величины называется соответственно величины и К-м факториальным моментом случайной величины Х называется величина

если математическое ожидание в правой части этого равенства определено.

Абсолютные моменты могут быть определены не только для целых k, но и для любых положительных действительных в случае, если соответствующие интегралы сходятся.

Ковариация.

Для описания системы двух случайных величин кроме математических ожиданий и дисперсий используют и другие характеристики. К их числу относятся ковариация и коэффициент коррекции.

Опр. Ковариацией между случайными величинами Х и Y называется число , где .Для непрерывных случайных величин X и Y используют формулу . Покажем, что если случайные величины Х и Y независимы, то . Пусть Х и Y—непрерывные случайные величины

Ф.мног.слювел.

Функцией распределения n-мерной случайной величиной (Х1, Х2, …, Хn)

называется вероятность выполнения n неравенств вида Хi < xi:

Закон больших чисел.

Вариационный ряд.

Множество всех вариант выборки, расположенных в порядке возрастания их значений, вместе с их соответствующими частотами или относительными частотами называется вариационным рядом:

Таблица интервалов, содержащая данную выборку значений случайной величины Х и соответствующие частоты или относительные частоты, называется статистическим рядом. Статистический ряд распределения вероятностей определяется по

исходной выборке объемом n, если анализируемая случайная величина Х является дискретной с известным множеством значений {x1..xm }:

 

Гистограмма – статистический аналог графика плотности вероятности f *(x) случайной величины, и она строится по интервальному статистическомуряду. Гистограмма представляет собой совокупность прямоугольников, построенных, как на основаниях, на интервалах hj статистического ряда с высотой равной статистической плотности вероятности в соответствующем

 

Эпмирическая функция.

Если x 1, x 2, … x n – выборка значений случайной величины Х, то эмпирической функцией распределения называется функция действительного аргумента x Î (- ∞; ∞), обозначаемая через , равная относительной частоте выборочных значений, меньших числа x.

Так как относительная частота значений случайной величины Х, удовлетворяющих неравенству Х < x, в выборке объема n стремится к вероятности выполнения этого неравенства, то при n → ∞ имеем, что = → P(X < x) = Fх(x).

 

Эмпирическая функция распределения обладает всеми свойствами теоретической функции распределения.

1. Эмпирическая функция распределения является неубывающей функцией, то есть

при x 1 < x 2.

2. Справедливы следующие равенства:

и .

3. Все значения эмпирической функции распределения находятся между 0 и 1, то есть

 

Выборочное среднее

Пусть выборка из распределения вероятности, определённая на некотором вероятностном пространстве . Тогда её выборочным средним называется случайная величина

.

Выборочная дисперсия

Пусть — выборка из распределения вероятности. Тогда

Выборочная дисперсия — это случайная величина

,

где символ обозначает выборочное среднее.

Несмещённая (исправленная) дисперсия — это случайная величина

.

 

50. Распределение (хи-квадрат) с степенями свободы — это распределение суммы квадратов независимых стандартных нормальных случайных величин. Пусть — совместно независимые стандартные нормальные случайные величины, то есть: . Тогда случайная величина

имеет распределение хи-квадрат с степенями свободы, то есть .

Распределение хи-квадрат является частным случаем гамма - распределения, и имеет вид:

,

где означает Гамма-распределение, а Гамма-функцию.

Функция распределения имеет следующий вид:

,

где и обозначают соответственно полную и неполную гамма-функции.

 

 

51 Распределе́ниеСтью́дента в теории вероятностей — это однопараметрическое семейство абсолютно непрерывных распределений. Названо в честь Уильяма СилиГоссета, который первым опубликовал работы, посвящённые распределению, под псевдонимом «Стьюдент». Пусть независимыестандартные нормальные случайные величины, такие что . Тогда распределение случайной величины , где

называется распределением Стьюдента с степенями свободы. Пишут . Её распределение абсолютно непрерывно и имеет плотность

,

где гамма-функция Эйлера.

 

52 Распределе́ниеФи́шера в теории вероятностей — это двухпараметрическое семейство абсолютно непрерывных распределений. Пусть — две независимые случайные величины, имеющие распределение хи-квадрат: , где . Тогда распределение случайной величины

,

называется распределением Фишера (распределением Снедекора) со степенями свободы и . Пишут .


Дискретные случайные величины. Законы


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.03 с.