Способ вращения вокруг оси, параллельной плоскости проекций. — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Способ вращения вокруг оси, параллельной плоскости проекций.



Способ вращения вокруг оси, параллельной плоскости проекций особенно широко применяется при решении четвертой задачи на преобразование чертежа, т.е. при преобразовании плоскости обще­го положения в плоскость уровня. При таком преобразовании все фигуры, лежащие в плоскости, будут проецироваться в натураль­ную величину. Особое преимущество настоящего способа преобра­зования перед ранее рассмотренными, состоит в том, что он на­иболее рационален, т.к. этот способ переводит плоскость общего положения в плоскость уровня, минуя предварительный ее перевод в плоскость проецирующую, что было необ­ходимо во всех предыдущих способах.

По этой причине задачи на определение истинных величин фигур и углов решаются преимущественно этим, способом.

Вращением около горизонтали, т. е. прямой, параллельной пло­скости p1, найдем натуральную величину основания пирамиды - треугольника АВС.

Построение.

 

1.Построив в плоскости треугольника горизонталь h(C1), принима­ем ее за ось вращения.

(hÌΔАВС)Ù(h ¤¤ p1);

Горизонтальные проекции окружностей, по которым будут пе­ремещаться вершины А и В представляют собой прямые, перпендикуляр­ные к оси вращения.(рис.12.1)

 

Рис.12.1

2.Находим повернутое положение вершин треуголь­ника.

Новое положение вершины В - точку В1/, предвари­тельно найдя способом прямоугольного треугольника натуральное значение радиуса вращения этой точки,

R = ОВ = O/ В о.(рис.12.2)

Рис.12.2

Вершина треугольника С, как лежащая на оси вращения, останет­ся неподвижной.

Повернутое положение вершины А найдем из двух следующих условий.

а)Горизонтальная проекция окружности, как отмечалось выше, по которой будет пе­ремещаться вершина А, представляет собой прямую, перпендикуляр­ную к оси вращения.

б) Сторона AB в повернутом положении, как и до поворота, будет проходить через точку 1. Точка 1 в процессе поворота остается неподвижной, т.к. она лежит на оси вращения. Проводим прямую через точки В1, 1 .

Пересечение прямых, найденных из этих двух условий, дает нам новую горизонтальную проекцию повернутой вершины А - точку А1.(рис.12.3)

Рис.12.3.

Соединяя вершины А11,C получаем новую горизонтальную проекцию треугольника АBС, плоскость которого параллельна плоскости p1 . Следовательно треугольник А1 В1C представляет со­бой натуральную величину заданного треугольника:

[DA1/B1/ C/] [DABC] (рис.12.4)

 

Рис.12.4.

Задача №4. Определить истинную величину ребра SC (в мм) и уголего наклона к плоскости основания пирамиды (в градусах).



Способ вращения вокруг оси, пер­пендикулярной к плоскости проекций.

Это преобразование является частным случаем способа плоскопараллельногоперемещения.

Повернем реберo пирамиды вокруг проецирующей оси i, прохо­дящей через вершину S, до положения, параллельного плоскости проекций. Тогда на эту плоскость ребро спроецируется без искажения. Одновременно опре­делится и угол его наклона к основанию пирамиды.

Построение.

1. Перемещаем треугольник АВС параллельно одной из плоскостей проекций так, чтобы после преобразования он занял проецирующее положение (см. задачу №1).

2.Располагаем вырожденную фронтальную проекцию DA2B2C2 –отрезок [A2//B2//C2//]параллельно оси х:

a2////х

При этом не изменится величина его фронтальной проекции:

[A2//B2//C2//] [A1//B1//C1//]

 

Горизонтальные проекции точек перемещаются в новое по­ложение по прямым параллельным оси х. По линиям связи строим горизонтальную проекцию DA2B2C2 (ΔA2/B2 C2/), которая конгру­энтна основанию пирамиды: [DA2/B2/ C2/] [DABC] (см. задачу №3).

 

3.Перемещаем вершину пирамиды из положения S1 в положение S2. Строим проекции ребра SC: [S2//C2//] [S1//C1//];

4. Через вершину С2 пирамиды проводим ось вращения, перпендикуляр­ную пл. p1: i2 С2, i2 p1

3. Повернем ребро [S2 C2] вокруг этой оси до положения, параллельного пл.p2: [S3 C2]// p2

На чертеже его горизонтальную проекцию располагаем параллельно оси х, т.е. [S/3 C/2]// х;

На фронтальную плоскость проекции p2 ребро [S3 C2] и угол его наклона к основанию пирамиды проецируется без искажения (рис.13).

Измеряем величину искомых параметров и указываем их на чертеже.

 

Рис.13.

 

 

Варианты заданий

Таблица 1.

Номер варианта Координаты точек
S A B C
  X   Y   Z   X   Y   Z   X   Y   Z   X   Y   Z

 



 

 

 

Рис. 14 Компоновка и исполнение листов.

Обозначения и символы

Таблица 2.

 

Обозначения геометрических фигур

Обозначения Содержание
А,В,…,1,2,… Точки
a,b,… l, m,… Линии, произвольно расположены в пространстве
  h f   Линии уровня: горизонталь фронталь
[AB] Отрезок прямой, ограниченной точками А и В
Поверхности (в том числе плоскости)
ABC Угол с вершинной в точке В
ABC Угловая величина (градусная мера) угла АВС, угла
  Обозначения прямого угла
  Расстояние между геометрическими фигурами: между точками А и В между точкой А и поверхностью между линиями a и b
p1 горизонтальная плоскость проекции
p2 фронтальная плоскость проекции
p3, p4,… Профильная и другие дополнительные плоскости проекций
x,y,z Оси проекций: x-ось абсцисс, y-ось ординат, z-ось аппликат
  A/,B/,…,1/,2/,… A//,B//,…1//,2// Проекции точек: горизонтальные фронтальные
  a/,b/,…,l/, a//b//…,l//,… Проекции линий: горизонтальные фронтальные
  Проекции поверхностей (в том числе плоскостей): горизонтальные фронтальные
  hоa foa Следы плоскостей (поверхностей): горизонтальные фронтальные
  aπ1, bπ1, ….. aπ2, bπ2, …..   Следы прямых линий: горизонтальные фронтальные

 

 

Символы, обозначающие отношения между геометрическими фигурами.

 

Обозначение Содержание Пример записи
тождественны
конгруэнтны
подобны
параллельны a // b
перпендикулярны a
скрещиваются C b
касательные t
принадлежит, является элементом A a
включает, содержит b
объединение A B=[AB]
пересечение M=L∩
эквивалентность A L a A a
логическое следствие a m a
  ^ Знак, соответствующий союзу «и» (h a)^(h//p1)

 

Задачи для самостоятельного решения.

1.Определить расстояние от произвольной точки А, принадлежащей плоскости π1 до прямой ВС, лежащей в плоскости π2 .

2.Вращением вокруг заданной оси совместить точку А с плоскостью α (рис.15).

 

Рис.15.

3.Определить угол между произвольными отрезками АВ и СD (рис.16).

4. В плоскости треугольника АВС провести прямую, параллельную стороне АВ и на расстоянии 10мм от последней (рис. 17).

Рис.16 Рис.17

5.Определить угол между осью х и прямой АВ (рис.18).

6.Найти геометрическое место точек, равноудаленных от сторон угла АВС (рис19).

Рис.18. Рис.19

7.Дана прямая АВ и горизонтальная проекция прямой CD. Построить фронтальную проекцию прямой CD , если известно, что прямые параллельны и расстояние между ними равно 15мм (рис.20).

Рис.20 Рис.21

8.Дана прямая ВС и горизонтальная проекция точки А. Определить недостающую проекцию точки А, если известно, что расстояние от точки до прямой равно 20мм (рис.21).

 

9.Определить фронтальную проекцию точки А, зная, что при вращении около заданной оси точка окажется на прямой ВС (рис.22).

10.Повернуть точку А вокруг заданной оси так, чтобы в новом положении она оказалась на расстоянии 25мм от прямой ВС (рис.23).

Рис.22. Рис.23.

11.Повернуть прямую АВ вокруг оси, перпендикулярной к плоскости проекций π1 так, чтобы в новом положении она прошла через заданную точку С (рис.24).

12.Способом вращения определить истинную величину шестиугольника ABCDEF (рис.25).

Рис.24. Рис. 25

13.Заменить плоскость π2 так, чтобы точка А была удалена от новой плоскости π4 на 30мм (рис.26).

14. Заменить одну из плоскостей так, чтобы в новой системе плоскостей отрезок стал фронталью (рис.27).

Рис.26. Рис.27

 

Вопросы для самопроверки.

1. Сформулируйте условия принадлежности прямой и точки к плоскости. Запишите эти условия с помощью символов.

2. Какие линии плоскости называются главными? Укажите характерные особенности проекций этих линий на эпюре Монжа.

3. Сформулируйте условия перпендикулярности прямой и плоскости.

4. Как направляются на чертеже проекции прямой, перпендикулярной к плоскости?

5. Как проецируется прямой угол, одна сторона которого параллельна плоскости проекций, а другая ей перпендикулярна?

6. Как используется свойство проекций прямого угла при построении на чертеже прямой, перпендикулярной к плоскости?

7. Какие плоскости называются проецирующими? В чем состоит отличи­тельная особенность их ортогональных проекций?

8. Как изображают на чертеже фронтально - или горизонтально-проецирующую плоскость, проведенную через прямую общего поло­жения?

9. Как найти точку встречи прямой с плоскостью, когда они занимают общее положение? Запишите символически алгоритмы решения этой задачи.

10.Как определить натуральную величину отрезка прямой общего поло­жения?

11.Сформулируйте условие параллельности двух плоскостей: прямой и плоскости.

12.Как построить плоскость, перпендикулярную к заданной прямой?

13.Как построить линию пересечения двух плоскостей общего положе­ния? Запишите символически алгоритм решения этой задачи.

14.В чем состоит метод конкурирующих точек для определения видимо­сти на эпюре?

15.Сформулируйте условие перпендикулярности двух плоскостей.

16.Какова цель преобразования чертежа?

17.Какие способы преобразования чертежа Вам известны?

18.В чем принципиальное различие рассмотренных способов преобразования чертежа?

19.Назовите основные задачи, решаемые преобразованием чертежа.

20.Назовите метрические задачи, решаемые одним преобразованием.

21. Назовите метрические задачи для решения которых требуется два преобразования. Какова последовательность их выполнения?

22.Назовите основные свойства преобразования чертежа способом плоскопараллельного перемещения.

23.Назовите закономерности преобразования чертежа способом вращения вокруг проецирующей прямой.

24.В чем разница способа вращения вокруг проецирующей прямой и плоскопараллельного перемещения?

25.В каких случаях удобно применять способ вращения вокруг линии уровня?

 

 

Рекомендуемая литература

1. Фролов С.А. Начертательная геометрия. М.: "Машиностроение",1983.

2. Фролов С.А. Сборник задач по начертательной геометрии. М.: "Машиностроение", 1980.

3. Гордон В.О., Семенов - Огиевский М.А. Курс начертательной геометрии. М.: Высш. шк.,2002.

4. Гордон В.О., Иванов Ю.Б., Солнцева Т.Е. Сборник задач по курсу начертательной геометрии. М.: Высш. шк., 2000.

 






Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...





© cyberpedia.su 2017 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.023 с.