Методы очистки почв (педосферы) — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Методы очистки почв (педосферы)

2017-10-21 1712
Методы очистки почв (педосферы) 0.00 из 5.00 0 оценок
Заказать работу

Методы очистки почвы иногда еще называют методами экологическая мелиорация педосферы (раздел геоэкологии). Главные задачи экологической мелиорации педосферы заключаются в разработке способов очистки всевозможных почв от экологически вредных и токсичных химических, биохимических и радиоактивных (дезактивация почв) загрязнений с целью восстановления их плодородия и экологической пригодности для сельского хозяйства.

В современных условиях многие из этих задач решаются в рамках агрохимии почв, однако, предмет и задачи исследований агрохимии почв гораздо шире, чем экологической мелиорации педосферы, имеющей узкую направленность.

С другой стороны, экологическая мелиорация педосферы тесно примыкает к рекультивации земель и ландшафтов - техническому и биологическому восстановлению нарушенного почвенного покрова или ландшафта (например, при разработке карьеров и т.п.). Однако, рекультивация обычно предусматривает целый комплекс восстановительных мероприятий, включая планировку, снятие или завоз почв, озеленение, благоустройство ландшафта и т.п. без работ по очистке почв или ландшафта.

Для борьбы с загрязнениями в геологической среде могут применяться два принципиально различных подхода. Первый из них - собственно очистка, предусматривающая непосредственное удаление вредных компонентов из объекта очистки тем или иным способом. Второй подход основан не на удалении, а на подавлении активности вредного компонента (детоксикации), например, путем его нейтрализации, разложения (деструкции), связывания, локализации и т.п.

С другой стороны, методология разработки способов очистки геологической среды от загрязнений может основываться и на анализе механизмов природных способов самоочистки экосистем. В их основе лежат процессы абиотического или биотического превращения химических веществ:

· физические процессы массопереноса;

разбавление (перемешивание);

вынос загрязнителей за пределы экосистемы;

испарение;

сорбция;

бионакопление;

· микробиологическая трансформация;

· химическая трансформация:

гидролиз,

фотолиз,

окисление и др.

К абиотическим превращениям относятся окислительные и восстановительные процессы, гидролиз, фотохимические реакции, реакции между самими посторонними веществами и т.п.

К биотическим превращениям относятся ферментативная детоксикация (например, тяжелых металлов), ферментативное окисление, разложение, восстановление. Органические вещества окончательно выводятся из геологической среды лишь в результате их минерализации, т.е. разложения органических соединений до диоксида углерода, воды и других небольших неорганических молекул (например, СO, HCl, NH3 и т.п.).

Физические методы очистки почв:

- Механические методы

- Гидродинамические методы

- Аэродинамические методы

- Термические методы

- Электрические методы

- Магнитные методы

- Электромагнитные методы

Механические методы

В настоящее время широко распространено простое механическое удаление с помощью различных технических средств загрязненного объема пород. Особенно часто этот метод используется при сильном поверхностном загрязнении, например радионуклидами или нефтью. Существенным недостатком метода является необходимость утилизации большого объема пород. Механическое перемешивание является важным этапом при использовании целого ряда химических, физико-химических и биологических методов. Вспашка является предварительным этапом перед промывкой солонцов с целью рассоления, механическое перемешивание используется и в процессе промывки. Для рассоления почв часто используется землевание, т.е нанесение слоя чистой почвы на поверхность загрязненного массива. Для землевания лучше всего подходят черноземные почвы, так как они содержат больше кальция и органического вещества. Во многих случаях может использоваться также землевание со вспашкой.

Гидродинамические методы

Гидродинамическое воздействие широко применяется при очистке массивов пород различного размера, оно является основным, на сегодняшний день, методом очистки подземным вод от различных загрязнителей. Гидродинамическое воздействие используется в виде дренажа, откачки, шунтирования, фильтрования и т.п., но в любом случае удаление загрязнителей происходит с фильтрующим потоком жидкости.

Методы растворения токсичных загрязнений основаны на способности некоторых экологически опасных соединений образовывать с водой идеальные или неидеальные растворы. В целях очистки промышленно загрязненных почв и грунтов от растворимых солей токсичных соединений используют поверхностное и подземное затопление водой и выщелачивающими растворами. С помощью растворения загрязнений водой удается очистить почвы от тяжелых металлов (хрома, кадмия, серебра, меди), радионуклидов (аммериция и плутония), летучих и растворимых углеводородов, галогенидов, пестицидов, гербицидов и цианогидрида ацетона.

Реагентное растворение (выщелачивание) используют в целях извлечения из загрязненных пород тяжелых металлов (свинца, олова, никеля, железа, хрома и кадмия), урана и соответствующих ему поливалентных металлов. В качестве реагентов используют аммиачную селитру, хлористый калий, орто- и пирофосфаты, органические и неорганические кислоты. В целях предотвращения осаждения и перехода загрязнений в структурную форму, не поддающуюся выщелачиванию используют комплексоны. Для устойчивости растворов, содержащих уран применяют дигалогенпроизводные фосфорсодержащие комплексоны, а для растворов содержащих тяжелые и благородные металлы в качестве комплексонов используют эталонамины, диамины, гуминовые и фульвокислоты.

Наиболее известным методом удаления загрязнения вместе с водой является откачка. Она может применяться самостоятельно и в сочетании с другими методами для всех типов загрязняющих веществ.

Аэродинамические методы

 

Близкими по механизму действия к гидродинамическим методам очистки являются аэродинамические методы. При использовании этих методов загрязнение удаляется вместе с циркулирующим в массиве воздухом или газами. К аэродинамическим методам очистки массивов относятся различного рода продувки, а также вакуумная и паровакуумная экстракция, Аэродинамические методы в основном используются для удаления из грунтов газообразных и жидких летучих экотоксикантов.

Самым простым из аэродинамических методов является продувка воздухом через скважины с выносом загрязнителей на поверхность.

Термические методы.

Термические методы уничтожения загрязнителей часто используются в грунтовых массивах. Очистка достигается в разных случаях как за счет нагревания, так и за счет охлаждения массивов. Нагревание используется во всех случаях, когда экотоксикант является термически нестойким соединением. Особую роль термические методы, включая сжигание и пиролиз, имеют при конечном уничтожении или разложении отходов-экотоксикантов.

Витрификация представляет собой процесс остеклования грунта при высокой температуре, при этом часть загрязнителей разлагается, а часть стабилизируется. Имеются примеры использования этого метода для пестицидов, ртути, диоксинов, хрома, радиоактивных веществ.

Электрические методы

Среди современных физических методов очистки геологической среды широкое распространение получили электрические способы воздействия. Их преимущество - в высокой эффективности, экологической безопасности и возможности воздействия на массив. Очистка подземных и поверхностных вод, почв, грунтов от экотоксикантов основывается на использовании электрохимических и электрокинетических процессов, происходящих в грунте под действием электрического тока. К электрохимическим процессам относятся электролиз (эффктивность 95-99 %), электрофлотация, электрокаогуляция, электродеструкция, электрохимическое окисление и выщелачивание, электродиализ, электрохимическое обеззараживание и электрохимический ионный обмен (EIX), а к электрокинетическим - электроосмос, электрофорез и электромиграция.

При электродиализе подземных и поверхностных вод, порового раствора почв и грунтов используют катионитовые и анионитовые мембраны позволяющие получить в средней части межэлектродного пространства обессоленный поровый раствор и разделить катионы и анионы при их удалении. В почвах и грунтах такими несовершенными мембранами служат глины. В определенных условиях метод позволяет удалять загрязнения в коллоидной форме.

Электрокинетические методы

 

В качестве примера можно рассмотреть такой метод как электромиграция. Электомиграциейназывают особый механизм перемещения разных заряженных ионов в растворе с различной скоростью. Причем более подвижные ионы концентрируются у электрода, соответствующего знаку их заряда. Для увеличения эффекта разделения создают постоянный противоток ионов противоположного знака. Скорость электромиграции ионов в поровом растворе почв и грунтов пропорциональна напряженности электрического тока и валентности ионов. Электромиграция не зависит от пористости пород и поэтому является одним из основных процессов массопереноса заряженных загрязнений под действием постоянного электрического тока в глинах и суглинках.

Магнитные методы

 

Использование магнитных полей в технологиях очистки почв, грунтов, поверхностных и подземных вод пока не значительно и требует дальнейшего изучения и развития. В настоящее время магнитное воздействие в основном используют для удаления из порового раствора грунтов и почв, поверхностных и подземных вод магнитных примесей и радионуклидов, а также для мобилизации загрязнений, находящихся в неподвижной или слабоподвижной форме.

Метод высокоградиентной магнитной сепарации основан на способности некоторых химических неорганических веществ приобретать различную остаточную намагниченность, что делает метод высокоселективным. Магнитный сепаратор помещают в вертикальных скважинах на глубине с максимальным загрязнением с учетом гидродинамических условий участка. Удаление и консервация загрязнений происходит в поверхностных условиях.

Электромагнитные методы

 

В современных технологиях очистки подземных и поверхностных вод, почв и грунтов широкое распространение получили электромагнитные (волновые) методы воздействия на загрязнения.

Ультразвуковая очистка эффективна для грубых и нефтяных загрязнений. При этом может происходить частичное разрушение грунта. Ультразвук очищает не только от отдельных частиц загрязнителя, но и от загрязнителей в пленках на поверхности частиц грунта.

Для очистки почв, грунтов и подземных вод от хлорированных энергозависимых и полуэнергозависимых органических загрязнений также используют электромагнитную энергию частот радиодиапазона(RF) и сверхвысоких частот (СВЧ). Метод основан на СВЧ-нагреве почв и грунтов на базе диэлектрического механизма в результате физического искажения молекулярной структуры материала под действием приложенного электромагнитного поля. Физические искажения переходят в механические, а затем в тепловую энергию.

К электромагнитным методам относят и очистку грунтов с помощью лазеров. Процесс деструкции, окисления загрязнений и обеззараживания грунтов происходит за счет их нагревания. Метод применим при очистке любых пород, почв и грунтов. Как и во всех описанных выше методах, основанных на высокотемпературном нагреве загрязненных участков геологической среды, в процессе обработки наблюдается разрушение структуры, изменение свойств и биоты пород.

Физико-химические методы очистки:

- коагуляционные методы;

- ионообменные методы;

- сорбционные методы.

Физико-химические методы очистки геологической среды основаны на применении таких процессов и явлений, как коагуляция, ионный обмен, диффузия, осмос, сорбция-десорбция и т.п., позволяющих удалять или связывать в локальном месте массива загрязняющие вещества. Наиболее широко физико-химические методы разработаны для процессов водоочистки, в меньшей мере - для очистки почв и горных пород. Чаще всего применяют методы, использующие в качестве основного процесса коагуляцию, ионный обмен и сорбцию.

Коагуляционные методы.

Тяжелые металлы аккумулируются гумусовым веществом почв (в основном гуминовыми кислотами), вследствие чего происходит их детоксикация. По снижению интенсивности аккумуляции металлы располагаются в следующий ряд - Cu, Cd, Pb, Co, Ni, Zn, Mn. Установлено, что действие гуминовых веществ на Cu, Pb, Cr(III) приводит к образованию хелатных соединений и снижению токсичности этих тяжелых металлов, тогда как их действие на Cd разнонаправленно. Гуминовые кислоты не влияют на нафталин, но снижают токсичность полиароматических углеводородов (ПАУ) и полихлоридных бифенилов (ПХБ). С другой стороны их влияние на токсичные низкомолекулярные органические соединения (пестициды, ароматические амины, хлорфенолы и др.) также разно направленно. Наибольшим детоксицирующим действием обладают гуминовые кислоты обогащенные ароматическими молекулярными структурами.

Известным агротехническим приемом инактивации тяжелых металлов является цеолитизация, при этом значительно снижается содержание в почве кислоторастворимых форм Zn и Pb, однако при этом ухудшается азотное и фосфорно-калийное питание растений. Сорбция Мо из растворов подземных и поверхностных вод осуществляется синтезированными анионитами ФА-М и ФА-Т. Эти синтетические аниониты отличаются высокой термической, химической и радиационной устойчивостью при большой обменной емкости и сорбционной способности по отношению к ионам молибдена.

Химические методы очистки

Основным и наиболее распространенным методом очистки геологической среды от загрязнений остается реагентная обработка грунтов. В зависимости от типа химической реакции и взаимодействия реагента с экотоксикантом целесообразно разделить все виды химического воздействия на группы: осаждения, окисления-восстановления, замещения, комплексообразования и др.

Введение реакционноспособных газов в виде разбавленных воздушных смесей сероводорода или азота используют для обработки пород, загрязненных тяжелыми металлами (Cr, Pb, Hg, Cd) и радионуклидами (U). Однако, исследования проведенные на грунтах с реальным загрязнением показали, что после химической обработки в породах фиксировалось более 90% хрома и 50 % урана, в то время как нитраты полностью теряли свою реакционную способность.

Методы управления окислительно-восстановительными условиями в специально созданных подземных барьерах используются для трансформации соединений тяжелых металлов (цинк, никель, свинец, соединения хрома, сурьмы, селена, кадмия, марганца) и радионуклидов (стронция, технеция и окисдов урана) в менее растворимые формы (гидроокислы), а также разрушения цианидов, растворенных форм нитратов, органических и хлорорганических соединений (тетрахлорид и другие хлорированные растворители). Созданные с помощью химических и биологических реагентов барьеры являются зоной с заданным окислительно-восстановительным потенциалом. В качестве реагентов для осаждения тяжелых металлов используют известь (поташ), сульфат натрия, оксиды и диоксиды железа, органический углерод и др.

Эффективность очистки зависит от реакционной способности реагента и экотоксиканта. Почвы обладают естественной способностью переводить часть тяжелых металлов в малоподвижное состояние в основном за счет содержания гумуса. В результате аккумуляции насыщенность гумусовых веществ цинком, медью, свинцом и кадмием в загрязненной почве часто превышает их фоновое содержание. По интенсивности аккумуляции в гумусе тяжелые металлы располагаются в следующем порядке Cu>Cd>Pb=Co>Ni>Zn>Mn. Макроэлементы (N, P, S, Mg, Fe, K) не аккумулируются.

Для осаждения микродоз тяжелых металлов в почвах в сельском хозяйстве используют внесение удобрений (минеральных, фосфорных, азотных, калийных). Например, внесение фосфорных и органических удобрений в почвы содержащие свинец, цинк, марганец, никель или стронций приводит к образованию при (рН<6) хелатных комплексных соединений, однако степень очистки зависит от дозы вносимых удобрений и условий вегетации растений. Образованию малорастворимых соединений тяжелых металлов в почвах способствует внесение фосфатов. Применение фосфатов целесообразно в породах с высоким рН, когда хелатные комплексы тяжелых металлов разрушаются. Доза и тип вносимых удобрений могут изменить поведение тяжелых металлов в почвах. Это связано с увеличением кислотности почв.

Как один из способов связывания тяжелых металлов в почвах используют гумусирование приводящее к образованию хелатных комплексных соединений. Однако недостатком метода является подкисление почв и неустойчивость хелатных соединений при высоких температурах [90]. В общем случае применение фосфорных удобрений, известкования, органических удобрений способствует иммобилизации свинца, никеля, кадмия в почве.

Процесс химического окисления загрязнений в почвах, грунтах, подземных и поверхностных водах основывается на отдаче электронов с внешнего не устойчивого слоя электронной оболочки атомов веществ и элементов, что приводит к переходу загрязняющего вещества в менее токсичную и реакционноспособную форму. К отдаче электронов склонны атомы элементов, у которых во внешнем электронном слое содержится малое число электронов. Процесс является составной частью окислительно-восстановительного взаимодействия загрязняющего вещества и химреагента или реакционноспособной поверхности. На современном этапе развития методов очистки геологической среды окислительно-восстановительные процессы используют для удаления из воды и породы полициклических и ароматических углеводородов (ПAУ), нефтяных углеводородов, ионов аммония, элементарного фтора и микроорганизмов. В качестве реагентов, создающих окислительно-восстановительные условия и свободные электроны в поровом растворе грунтов, подземных и поверхностных водах, используют хлор, кислород, озон и атмосферный воздух.

Окисление кислородом и воздухом используют преимущественно для очистки почв, природных и техногенных грунтов неоднородных по проницаемости или слабопроницаемых. Этим способом удается снизить исходные содержания загрязнений до 3%. Для удаления полициклических и ароматических углеводородов из подземных и поверхностных вод также используют газообразный озон - метод озонирования.

Для химической иммобилизации (связывания) загрязнений используют неорганические вяжущие типа цемента, золы, Na- и K-силикатов, доменного шлака, смеси зола-известь и гелирующих веществ типа бентонита и целлюлозы. Иммобилизацию цементацией используют для связывания тяжелых металлов, радиоактивных отходов, полициклических и ароматических углеводородов, угольного дегтя и трихлорэтилена. Недостатком метода является неустойчивость некоторых вяжущих к агрессивным подземным водам, что приводит к постепенному выщелачиванию загрязнений и поступлению их в экосистемы.


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.027 с.